Révision 223

CSL17/completeness.tex (revision 223)
7 7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 8
\end{theorem}
9 9

  
10
The rest of this section is devoted to a proof of this theorem.
11
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
10
\todo{Add proof sketch. Cut and paste main proof to appendix.}
12 11

  
13
 The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional, as already shown in Sect. \ref{sect:graphsbasicfunctions}. Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. 
14
\paragraph*{Predicative minimisation}
15
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. 
16
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
17
\[
18
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
19
\]
20
Let us define $A_f(\vec u ; \vec x , z)$ as:
21
\[
22
\begin{array}{rl}
23
&\left(
24
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
25
\right) \\
26
\cor & \left(
27
\begin{array}{ll}
28
z\neq 0 
29
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
30
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) 
31
\end{array}
32
\right)
33
\end{array}
34
\]
35
Notice that $A_f$ is $\Pi^{\safe}_{i-1}$, since $A_g$ is $\Sigma^{\safe}_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
36
In particular this means $A_f$ is $\Sigma^{\safe}_i$.
37 12

  
38
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
39 13

  
40
\begin{lemma}
41
[Minimisation]
42
$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.	
43
\end{lemma}
44
% see Thm 20 p. 58 in Buss' book.
45
%\begin{proof}
46
%\end{proof}
47
 This Lemma is proved by using the same method as for the proof of the analogous result in the bounded arithmetic $S_2^{i+1}$ (see \cite{Buss86book}, Thm 20, p. 58).
48 14

  
49
\patrick{Examining it superficially, I think indeed the proof of Buss can be adapted to our setting. But we should probably look again at that with more scrutiny.}
50 15

  
51
Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
52
\[
53
\exists !z^\safe  . A_f(\vec u ; \vec x , z)
54
\]
55
Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
56
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. 
57
%\todo{verify $z\neq 0$ disjunct.} 
58
Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
59
 $\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
60
  $\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce 
61
 $\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
62
 $A_f(\vec u ; \vec x , z)$ is proven.  
63 16

  
64
 Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.  
65 17

  
66
So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
67 18

  
68
\paragraph*{Predicative recursion on notation}
69 19

  
70
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
71
	\begin{itemize}
72
	%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
73
		\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
74
		\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
75
	\end{itemize}
76
	}
77
\patrick{I also assume access to the following predicates:
78
\begin{itemize}
79
%   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
80
%   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
81
   \item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
82
\end{itemize}}
83
In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}.
84 20

  
85
Suppose that $f$ is defined by predicative recursion on notation:
86
\[
87
\begin{array}{rcl}
88
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
89
f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
90
\end{array}
91
\]
92 21

  
93
\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
94 22

  
95
Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
96
We define $A_f (u ,\vec u ; \vec x , y)$ as,
97
\[
98
\exists w^\safe . \left(
99
\begin{array}{ll}
100
& 
101
%Seq(z) \cand 
102
\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
103
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
104
\cand & \forall^{\normal}  k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
105
\end{array}
106
\right)
107
\]
108
where 
109
\[
110
B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left(
111
\begin{array}{ll}
112
& \zerobit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\
113
\cand &  \onebit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) )
114
\end{array}
115
\right)
116
\]
117 23

  
118
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
119 24

  
120
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
121
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
122
\[
123
\exists y^\safe . A_f (u , \vec u ; \vec x , y) 
124
\quad \seqar \quad
125
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z)
126
\]
127 25

  
128
So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and 
129
 $A_f (u , \vec u ; \vec x , w) $.
130
 
131
 We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that
132
 $\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$
133
 
134
 So we have, for $k=|u|$:
135
 
136
 $$  \beta (k, w', y) \cand \beta (k+1 ,w', z)  \cand B (u , \vec u ; \vec x , y , z).$$
137
  
138
  and we can conclude that
139
   \[
140
\exists w'^\safe . \left(
141
\begin{array}{ll}
142
& 
143
%Seq(z) \cand 
144
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\
145
\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
146
\end{array}
147
\right)
148
\]
149
So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u,  
150
\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula. 
151 26

  
152
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
153 27

  
154
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
155 28

  
156
\paragraph*{Safe composition}
157
Now suppose that $f$ is defined by safe composition:
158
\[
159
f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
160
\]
161 29

  
162
By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
163
In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
164 30

  
165
We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
166
\[
167
\exists \vec v^\normal . \exists \vec y^\safe .  
168
\left(  
169
\bigwedge\limits_i A_{h_i} (\vec u , v_i)
170
\wedge
171
\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
172
\wedge
173
A_g ( \vec v , \vec y , z ) 
174
\right)
175
\]
176
The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
177 31

  
178
\todo{elaborate}
179 32

  
180
The proof of Thm \ref{thm:completeness} is thus completed.
181

  
182

  
183

  
184

  
185

  
186

  
187

  
188

  
189

  
190

  
191

  
192

  
193

  
194

  
195

  
196

  
197

  
198

  
199

  
200

  
201

  
202

  
203

  
CSL17/appendix-completeness.tex (revision 223)
1
\section{Proof of completeness}
1
\section{Proof of completeness}
2

  
3
The rest of this section is devoted to a proof of this theorem.
4
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
5

  
6
The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional, as already shown in Sect. \ref{sect:graphsbasicfunctions}. Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. 
7
\paragraph*{Predicative minimisation}
8
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. 
9
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
10
\[
11
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
12
\]
13
Let us define $A_f(\vec u ; \vec x , z)$ as:
14
\[
15
\begin{array}{rl}
16
&\left(
17
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
18
\right) \\
19
\cor & \left(
20
\begin{array}{ll}
21
z\neq 0 
22
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
23
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) 
24
\end{array}
25
\right)
26
\end{array}
27
\]
28
Notice that $A_f$ is $\Pi^{\safe}_{i-1}$, since $A_g$ is $\Sigma^{\safe}_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
29
In particular this means $A_f$ is $\Sigma^{\safe}_i$.
30

  
31
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
32

  
33
\begin{lemma}
34
	[Minimisation]
35
	$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.	
36
	\end{lemma}
37
	% see Thm 20 p. 58 in Buss' book.
38
	%\begin{proof}
39
	%\end{proof}
40
	This Lemma is proved by using the same method as for the proof of the analogous result in the bounded arithmetic $S_2^{i+1}$ (see \cite{Buss86book}, Thm 20, p. 58).
41
	
42
	\patrick{Examining it superficially, I think indeed the proof of Buss can be adapted to our setting. But we should probably look again at that with more scrutiny.}
43
	
44
	Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
45
	\[
46
	\exists !z^\safe  . A_f(\vec u ; \vec x , z)
47
	\]
48
	Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
49
	We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. 
50
	%\todo{verify $z\neq 0$ disjunct.} 
51
	Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
52
	$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
53
	$\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce 
54
	$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
55
	$A_f(\vec u ; \vec x , z)$ is proven.  
56
	
57
	Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.  
58
	
59
	So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
60
	
61
	\paragraph*{Predicative recursion on notation}
62
	
63
	\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
64
		\begin{itemize}
65
			%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
66
			\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
67
			\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
68
			\end{itemize}
69
			}
70
			\patrick{I also assume access to the following predicates:
71
				\begin{itemize}
72
					%   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
73
					%   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
74
					\item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
75
					\end{itemize}}
76
					In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}.
77
					
78
					Suppose that $f$ is defined by predicative recursion on notation:
79
					\[
80
					\begin{array}{rcl}
81
					f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
82
					f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
83
					\end{array}
84
					\]
85
					
86
					\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
87
					
88
					Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
89
					We define $A_f (u ,\vec u ; \vec x , y)$ as,
90
					\[
91
					\exists w^\safe . \left(
92
					\begin{array}{ll}
93
					& 
94
					%Seq(z) \cand 
95
					\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
96
					%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
97
					\cand & \forall^{\normal}  k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
98
					\end{array}
99
					\right)
100
					\]
101
					where 
102
					\[
103
					B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left(
104
					\begin{array}{ll}
105
					& \zerobit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\
106
					\cand &  \onebit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) )
107
					\end{array}
108
					\right)
109
					\]
110
					
111
					%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
112
					
113
					To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
114
					The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
115
					\[
116
					\exists y^\safe . A_f (u , \vec u ; \vec x , y) 
117
					\quad \seqar \quad
118
					\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z)
119
					\]
120
					
121
					So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and 
122
					$A_f (u , \vec u ; \vec x , w) $.
123
					
124
					We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that
125
					$\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$
126
					
127
					So we have, for $k=|u|$:
128
					
129
					$$  \beta (k, w', y) \cand \beta (k+1 ,w', z)  \cand B (u , \vec u ; \vec x , y , z).$$
130
					
131
					and we can conclude that
132
					\[
133
					\exists w'^\safe . \left(
134
					\begin{array}{ll}
135
					& 
136
					%Seq(z) \cand 
137
					\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\
138
					\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
139
					\end{array}
140
					\right)
141
					\]
142
					So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u,  
143
					\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula. 
144
					
145
					\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
146
					
147
					\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
148
					
149
					\paragraph*{Safe composition}
150
					Now suppose that $f$ is defined by safe composition:
151
					\[
152
					f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
153
					\]
154
					
155
					By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
156
					In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
157
					
158
					We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
159
					\[
160
					\exists \vec v^\normal . \exists \vec y^\safe .  
161
					\left(  
162
					\bigwedge\limits_i A_{h_i} (\vec u , v_i)
163
					\wedge
164
					\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
165
					\wedge
166
					A_g ( \vec v , \vec y , z ) 
167
					\right)
168
					\]
169
					The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
170
					
171
					\todo{elaborate}
172
					
173
					The proof of Thm \ref{thm:completeness} is thus completed.

Formats disponibles : Unified diff