Statistiques
| Révision :

root / CSL17 / appendix-sequent-calculus.tex @ 223

Historique | Voir | Annoter | Télécharger (8,08 ko)

1 221 adas
\section{Sequent calculus formalisation of $\arith^i$}
2 221 adas
\label{sect:app-sequent-calculus}
3 221 adas
4 221 adas
5 221 adas
\begin{figure}
6 221 adas
	\[
7 221 adas
	\small
8 221 adas
	\begin{array}{l}
9 221 adas
	\begin{array}{cccc}
10 221 adas
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
11 221 adas
	%& \vlinf{\id}{}{p \seqar p}{}
12 221 adas
	%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
13 221 adas
	%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
14 221 adas
	\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
15 221 adas
	& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
16 221 adas
	&&
17 221 adas
	\\
18 221 adas
	\noalign{\bigskip}
19 221 adas
	%\noalign{\bigskip}
20 221 adas
	\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
21 221 adas
	&
22 221 adas
	\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
23 221 adas
	&
24 221 adas
	%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
25 221 adas
	%\quad
26 221 adas
	\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
27 221 adas
	&
28 221 adas
	%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
29 221 adas
	%\quad
30 221 adas
	\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
31 221 adas
	\\
32 221 adas
	\noalign{\bigskip}
33 221 adas
34 221 adas
	\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
35 221 adas
	&
36 221 adas
37 221 adas
	\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
38 221 adas
	&
39 221 adas
	&
40 221 adas
	%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
41 221 adas
	%&
42 221 adas
	%
43 221 adas
	%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
44 221 adas
45 221 adas
46 221 adas
	\\
47 221 adas
48 221 adas
	\noalign{\bigskip}
49 221 adas
	%\text{Structural:} & & & \\
50 221 adas
	%\noalign{\bigskip}
51 221 adas
52 221 adas
	%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
53 221 adas
	%&
54 221 adas
	\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
55 221 adas
	%&
56 221 adas
	%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
57 221 adas
	&
58 221 adas
	\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
59 221 adas
	&
60 221 adas
	&
61 221 adas
	\\
62 221 adas
	\noalign{\bigskip}
63 221 adas
	\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
64 221 adas
	&
65 221 adas
	\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
66 221 adas
	&
67 221 adas
	\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
68 221 adas
	&
69 221 adas
	\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
70 221 adas
	%\noalign{\bigskip}
71 221 adas
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
72 221 adas
	\end{array}
73 221 adas
	\end{array}
74 221 adas
	\]
75 221 adas
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
76 222 adas
	\end{figure}
77 222 adas
78 222 adas
79 222 adas
80 222 adas
	 \begin{lemma}
81 222 adas
	 	For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable.
82 222 adas
	 \end{lemma}
83 222 adas
84 222 adas
	 \subsection{Free-cut free normal form of proofs}
85 222 adas
	 \todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
86 222 adas
87 222 adas
	 Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
88 222 adas
	 \begin{definition}\label{def:anchoredcut}
89 222 adas
	 	We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
90 222 adas
	 	\begin{itemize}
91 222 adas
	 		\item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
92 222 adas
	 		(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
93 222 adas
	 		\item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
94 222 adas
	 	\end{itemize}
95 222 adas
	 	A cut which is not anchored will also be called a \textit{free-cut}.
96 222 adas
	 \end{definition}
97 222 adas
	 As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
98 222 adas
	 \begin{itemize}
99 222 adas
	 	\item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
100 222 adas
	 	\item The other premise is either of the same form or is a logical step with principal formula $A$.
101 222 adas
	 \end{itemize}
102 222 adas
103 222 adas
	 Now we have (see \cite{Takeuti87}):
104 222 adas
	 \begin{theorem}
105 222 adas
	 	[Free-cut elimination]\label{thm:freecutelimination}
106 222 adas
	 	\label{thm:free-cut-elim}
107 222 adas
	 	Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
108 222 adas
	 \end{theorem}
109 222 adas
	 Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
110 222 adas
111 222 adas
	 Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
112 222 adas
113 222 adas
	 \begin{lemma}\label{lem:welltyped}
114 222 adas
	 	If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
115 222 adas
	 	the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
116 222 adas
	 \end{lemma}
117 222 adas
	 \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
118 222 adas
	 \begin{proof}[Proof sketch]
119 222 adas
	 	First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
120 222 adas
121 222 adas
	 	Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
122 222 adas
	 	$\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
123 222 adas
124 222 adas
	 	Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
125 222 adas
	 \end{proof}
126 222 adas
127 222 adas
	 \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
128 222 adas
129 222 adas
	 \begin{theorem}
130 222 adas
	 	Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent
131 222 adas
	 	$\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
132 222 adas
	 	\begin{enumerate}
133 222 adas
	 		\item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
134 222 adas
	 		\item $\pi$ is a well-typed and integer-positive proof.
135 222 adas
	 	\end{enumerate}
136 222 adas
	 \end{theorem}