root / CSL17 / appendix-sequent-calculus.tex @ 223
Historique | Voir | Annoter | Télécharger (8,08 ko)
1 | 221 | adas | \section{Sequent calculus formalisation of $\arith^i$} |
---|---|---|---|
2 | 221 | adas | \label{sect:app-sequent-calculus} |
3 | 221 | adas | |
4 | 221 | adas | |
5 | 221 | adas | \begin{figure} |
6 | 221 | adas | \[ |
7 | 221 | adas | \small |
8 | 221 | adas | \begin{array}{l} |
9 | 221 | adas | \begin{array}{cccc} |
10 | 221 | adas | %\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
11 | 221 | adas | %& \vlinf{\id}{}{p \seqar p}{} |
12 | 221 | adas | %& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
13 | 221 | adas | %& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
14 | 221 | adas | \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{} |
15 | 221 | adas | & \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
16 | 221 | adas | && |
17 | 221 | adas | \\ |
18 | 221 | adas | \noalign{\bigskip} |
19 | 221 | adas | %\noalign{\bigskip} |
20 | 221 | adas | \vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
21 | 221 | adas | & |
22 | 221 | adas | \vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
23 | 221 | adas | & |
24 | 221 | adas | %\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
25 | 221 | adas | %\quad |
26 | 221 | adas | \vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
27 | 221 | adas | & |
28 | 221 | adas | %\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
29 | 221 | adas | %\quad |
30 | 221 | adas | \vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
31 | 221 | adas | \\ |
32 | 221 | adas | \noalign{\bigskip} |
33 | 221 | adas | |
34 | 221 | adas | \vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
35 | 221 | adas | & |
36 | 221 | adas | |
37 | 221 | adas | \vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
38 | 221 | adas | & |
39 | 221 | adas | & |
40 | 221 | adas | %\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
41 | 221 | adas | %& |
42 | 221 | adas | % |
43 | 221 | adas | %\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
44 | 221 | adas | |
45 | 221 | adas | |
46 | 221 | adas | \\ |
47 | 221 | adas | |
48 | 221 | adas | \noalign{\bigskip} |
49 | 221 | adas | %\text{Structural:} & & & \\ |
50 | 221 | adas | %\noalign{\bigskip} |
51 | 221 | adas | |
52 | 221 | adas | %\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
53 | 221 | adas | %& |
54 | 221 | adas | \vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
55 | 221 | adas | %& |
56 | 221 | adas | %\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
57 | 221 | adas | & |
58 | 221 | adas | \vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
59 | 221 | adas | & |
60 | 221 | adas | & |
61 | 221 | adas | \\ |
62 | 221 | adas | \noalign{\bigskip} |
63 | 221 | adas | \vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
64 | 221 | adas | & |
65 | 221 | adas | \vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
66 | 221 | adas | & |
67 | 221 | adas | \vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
68 | 221 | adas | & |
69 | 221 | adas | \vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
70 | 221 | adas | %\noalign{\bigskip} |
71 | 221 | adas | % \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
72 | 221 | adas | \end{array} |
73 | 221 | adas | \end{array} |
74 | 221 | adas | \] |
75 | 221 | adas | \caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus} |
76 | 222 | adas | \end{figure} |
77 | 222 | adas | |
78 | 222 | adas | |
79 | 222 | adas | |
80 | 222 | adas | \begin{lemma} |
81 | 222 | adas | For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. |
82 | 222 | adas | \end{lemma} |
83 | 222 | adas | |
84 | 222 | adas | \subsection{Free-cut free normal form of proofs} |
85 | 222 | adas | \todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
86 | 222 | adas | |
87 | 222 | adas | Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality. |
88 | 222 | adas | \begin{definition}\label{def:anchoredcut} |
89 | 222 | adas | We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows: |
90 | 222 | adas | \begin{itemize} |
91 | 222 | adas | \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or |
92 | 222 | adas | (ii) the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical. |
93 | 222 | adas | \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step. |
94 | 222 | adas | \end{itemize} |
95 | 222 | adas | A cut which is not anchored will also be called a \textit{free-cut}. |
96 | 222 | adas | \end{definition} |
97 | 222 | adas | As a consequence of this definition, an anchored cut on a formula $A$ has the following properties: |
98 | 222 | adas | \begin{itemize} |
99 | 222 | adas | \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context. |
100 | 222 | adas | \item The other premise is either of the same form or is a logical step with principal formula $A$. |
101 | 222 | adas | \end{itemize} |
102 | 222 | adas | |
103 | 222 | adas | Now we have (see \cite{Takeuti87}): |
104 | 222 | adas | \begin{theorem} |
105 | 222 | adas | [Free-cut elimination]\label{thm:freecutelimination} |
106 | 222 | adas | \label{thm:free-cut-elim} |
107 | 222 | adas | Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
108 | 222 | adas | \end{theorem} |
109 | 222 | adas | Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs. |
110 | 222 | adas | |
111 | 222 | adas | Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are. |
112 | 222 | adas | |
113 | 222 | adas | \begin{lemma}\label{lem:welltyped} |
114 | 222 | adas | If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$ such that |
115 | 222 | adas | the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof. |
116 | 222 | adas | \end{lemma} |
117 | 222 | adas | \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.} |
118 | 222 | adas | \begin{proof}[Proof sketch] |
119 | 222 | adas | First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed. |
120 | 222 | adas | |
121 | 222 | adas | Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms |
122 | 222 | adas | $\forall^{\safe}$, $\exists^{\safe}$, $\forall^{\normal}$, $\exists^{\normal}$, and for the last two ones they are sharply bounded. |
123 | 222 | adas | |
124 | 222 | adas | Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises. For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof, and the premises of the rule have become well-typed. |
125 | 222 | adas | \end{proof} |
126 | 222 | adas | |
127 | 222 | adas | \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.} |
128 | 222 | adas | |
129 | 222 | adas | \begin{theorem} |
130 | 222 | adas | Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent |
131 | 222 | adas | $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying: |
132 | 222 | adas | \begin{enumerate} |
133 | 222 | adas | \item $\pi$ only contains $\Sigma^\safe_{i}$ formulas, |
134 | 222 | adas | \item $\pi$ is a well-typed and integer-positive proof. |
135 | 222 | adas | \end{enumerate} |
136 | 222 | adas | \end{theorem} |