Statistiques
| Révision :

root / CSL16 / appendix-arithmetic.tex @ 223

Historique | Voir | Annoter | Télécharger (4,35 ko)

1 113 adas
\section{Proofs and further remarks for Sect.~\ref{sect:arithmetic}}
2 108 adas
\label{sect:app-arithmetic}
3 108 adas
4 108 adas
\begin{proof}[Proof of Prop.~\ref{prop:equiv-rules}]
5 108 adas
We give only the case for induction, the others being routine.
6 108 adas
7 108 adas
First, let us assume the induction axiom and derive the rule:
8 108 adas
\[
9 113 adas
\hspace{-2.5em}
10 113 adas
\small
11 108 adas
\vlderivation{
12 108 adas
\vliq{\cntr}{}{ !\word (t) , !\Gamma, A(\epsilon) \seqar A(t) , ?\Delta }{
13 108 adas
\vlin{2\cdot\cut}{}{!\word(t) , !\Gamma,  !\Gamma, A(\epsilon) \seqar A(t) , ?\Delta, ?\Delta }{
14 108 adas
\vlhy{
15 108 adas
{
16 108 adas
\left\{
17 108 adas
\vlderivation{
18 108 adas
\vlin{\rigrul{!}}{}{ !\Gamma \seqar ! \forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) , ?\Delta }{
19 108 adas
\vlin{\rigrul{\forall}}{}{ !\Gamma \seqar  \forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) , ?\Delta }{
20 108 adas
\vlin{2\cdot\rigrul{\limp}}{}{ !\Gamma \seqar !\word (a) \limp A(a) \limp A(\succ_i a) , ?\Delta }{\vlhy{ !\word (a) ,!\Gamma , A(a) \seqar A(\succ_i a) , ?\Delta }}
21 108 adas
}
22 108 adas
}
23 108 adas
}
24 108 adas
\right\}_{i=0,1}
25 108 adas
}
26 108 adas
\qquad
27 108 adas
{
28 108 adas
\vlderivation{
29 108 adas
\vliq{\inv{\forall} }{}{ !\word (t), A(\epsilon) ,\{!\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) )\}_{i=0,1} \seqar A(t) }{
30 108 adas
\vliq{\inv{\limp}}{}{ A(\epsilon) , \{!\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) )\}_{i=0,1}  \seqar \forall x^{!\word} .A(x) }{
31 108 adas
\vlhy{
32 108 adas
\seqar
33 108 adas
%A(\epsilon)
34 108 adas
%\limp !(\forall x^{!\word} . ( A(x) \limp A(\succ_0 x) ) )
35 108 adas
%\limp  !(\forall x^{!\word} . ( A(x) \limp A(\succ_1 x) ) )
36 108 adas
%\limp  \forall x^{!\word} . A(x)
37 108 adas
\ind
38 108 adas
}
39 108 adas
}
40 108 adas
}
41 108 adas
}
42 108 adas
}
43 108 adas
}
44 108 adas
}
45 108 adas
}
46 108 adas
}
47 108 adas
\]
48 108 adas
Now we assume the induction rule and derive the axiom,
49 108 adas
\[
50 108 adas
\vlderivation{
51 108 adas
\vlin{3\cdot\rigrul{\limp}}{}{\seqar \ind }{
52 108 adas
\vlin{\rigrul{\limp},\rigrul{\forall}}{}{\{ !\forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) \}_{i=0,1} , A(\epsilon) \seqar \forall x^{!\word} . A(x) }{
53 108 adas
\vlin{\ind}{}{!\word (t) , \{ !\forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) \}_{i=0,1} \seqar A(b) }{
54 108 adas
\vlhy{
55 108 adas
\left\{
56 108 adas
\vltreeder{\pi_i}{ !\word (a) , \{ !\forall x^{!\word} . ( A(x) \limp A(\succ_i x) ) \}_{i=0,1} , A(a) \seqar A(\succ_i a) }{\quad}{}{\quad }
57 108 adas
\right\}_{i=0,1}
58 108 adas
}
59 108 adas
}
60 108 adas
}
61 108 adas
}
62 108 adas
}
63 108 adas
\]
64 108 adas
where the proofs $\pi_i$ are obtainable from just logical rules.
65 108 adas
\end{proof}
66 108 adas
67 120 adas
%\paragraph*{Formulation of induction with designated premise for base case}
68 120 adas
%Here is the induction rule when there is a designated premise for the base case.
69 120 adas
%\begin{equation}
70 120 adas
%\label{eqn:ind-rul-base-prem}
71 120 adas
%\vliiinf{}{}{ !\word(t) , !\Gamma  \seqar A(t), ?\Delta }{!\Gamma \seqar A(\epsilon)}{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_0 a) , ?\Delta }{ !\word(a) , !\Gamma, A(a) \seqar A(\succ_1 a) , ?\Delta  }
72 120 adas
%\end{equation}
73 120 adas
%As mentioned, this is not equivalent to the formulation given, due to the linear logic setting. From an axiomatic point of view, it is equivalent to the $\ind$ axiom with $!A(\epsilon)$ in place of $A(\epsilon)$.
74 110 adas
75 113 adas
%Proof that coherent ESs have a model:
76 113 adas
%\begin{proof}[Proof of Prop.~\ref{prop:eq-spec-model}]
77 113 adas
%	%\todo{ take $\Word \cup \{\bot\}$ or use completeness? Omit if no time. }
78 113 adas
%	Consider the standard model $\Word $ extended by an element $\infty$ with $\succ_0 \infty = \succ_1 \infty = \infty$. Setting $\word = \Word$ means this model satisfies $\basic$. Now, for each function symbol $f$, define $f(\sigma) = \tau$ for every $\sigma, \tau \in \Word$ for which this equation is forced by $\eqspec$. Otherwise define $f(\sigma) = f(\infty) = \infty$.
79 113 adas
%%	\todo{replace with argument using completeness.}
80 113 adas
%\end{proof}
81 110 adas
82 113 adas
%Proof that guarded quantifiers are compatible with free-cut elimination:
83 110 adas
\begin{proof}[Proof of Cor.~\ref{cor:free-cut-elim-guarded-quants}]
84 110 adas
	First translate the proof $\pi$ into the proof $\pi_0$ where all guarded quantifiers rules have been replaced by their derivation, and say that two rule instances in $\pi_0$ are \textit{siblings} if they come from the same derivation of a guarded quantifier rule. So in $\pi_0$ any two sibling rules are consecutive. Now observe that in the free-cut elimination procedure:
85 110 adas
	\begin{itemize}
86 110 adas
		\item when we do a commutation step of a cut with a $\forall$ (resp. $\exists$ rule) that has a sibling, we can follow it by another commutation of cut with its sibling,
87 110 adas
		\item when we do a logical cut-elimination step on a $\forall$ (resp. $\exists$ rule) that has a sibling, we can follow it by a logical cut-elimination step on its sibling, as illustrated by Prop. \ref{prop:logicalstepguardedquantifer}.
88 110 adas
	\end{itemize}
89 110 adas
	In this way sibling rules remain consecutive in the proof-tree throughout the reduction, and the procedure transforms the proof into one with only anchored cuts.
90 110 adas
\end{proof}