root / CSL17 / appendix-soundness.tex @ 222
Historique | Voir | Annoter | Télécharger (6,61 ko)
1 |
\section{Proof of soundness} |
---|---|
2 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
3 |
|
4 |
\begin{proof} |
5 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
6 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
7 |
|
8 |
|
9 |
\paragraph*{Negation} |
10 |
Can assume only on atomic formulae, so no effect. |
11 |
|
12 |
\paragraph*{Logical rules} |
13 |
Pairing, depairing. Need length-boundedness. |
14 |
|
15 |
If we have a left conjunction step: |
16 |
\[ |
17 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
18 |
\] |
19 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
20 |
\[ |
21 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
22 |
\quad \implies \quad |
23 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
24 |
\] |
25 |
for some polynomial $p$. |
26 |
% |
27 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
28 |
|
29 |
|
30 |
Right disjunction step: |
31 |
\[ |
32 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
33 |
\] |
34 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
35 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
36 |
\[ |
37 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
38 |
\quad \implies \quad |
39 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
40 |
\] |
41 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
42 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
43 |
\paragraph*{Quantifiers} |
44 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
45 |
|
46 |
|
47 |
|
48 |
Sharply bounded quantifiers are generalised versions of logical rules. |
49 |
\[ |
50 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
51 |
\] |
52 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
53 |
\[ |
54 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
55 |
\quad \implies \quad |
56 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
57 |
\] |
58 |
with $|f|\leq q(|l|)$. |
59 |
|
60 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
61 |
|
62 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
63 |
|
64 |
|
65 |
Right existential: |
66 |
\[ |
67 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
68 |
\] |
69 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
70 |
|
71 |
|
72 |
\paragraph*{Contraction} |
73 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
74 |
|
75 |
\[ |
76 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
77 |
\] |
78 |
|
79 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
80 |
We define: |
81 |
\[ |
82 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
83 |
\quad \dfn \quad |
84 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
85 |
\] |
86 |
|
87 |
|
88 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
89 |
\paragraph*{Induction} |
90 |
Corresponds to safe recursion on notation. |
91 |
Suppose final step is (wlog): |
92 |
\[ |
93 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
94 |
\] |
95 |
\anupam{need to say in normal form part that can assume induction of this form} |
96 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
97 |
|
98 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
99 |
\[ |
100 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
101 |
\quad \implies \quad |
102 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
103 |
\] |
104 |
First let us define $ f$ as follows: |
105 |
\[ |
106 |
\begin{array}{rcl} |
107 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
108 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
109 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
110 |
\end{array} |
111 |
\] |
112 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
113 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
114 |
|
115 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
116 |
|
117 |
\paragraph*{Cut} |
118 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
119 |
Otherwise it is a `raisecut': |
120 |
\[ |
121 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
122 |
\] |
123 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
124 |
\[ |
125 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
126 |
\quad \dfn \quad |
127 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
128 |
\] |
129 |
\end{proof} |
130 |
|