Révision 222 CSL17/soundness.tex
soundness.tex (revision 222) | ||
---|---|---|
149 | 149 |
In order to prove Thm.~\ref{thm:soundness} we need the following lemma: |
150 | 150 |
|
151 | 151 |
|
152 |
\paragraph*{Two properties needed} |
|
153 |
For below, need witnesses and functions bounded by a polynomial in $l$. |
|
154 |
|
|
155 | 152 |
\begin{lemma} |
156 | 153 |
[Proof interpretation] |
157 | 154 |
\label{lem:proof-interp} |
... | ... | |
167 | 164 |
\anupam{Need $\vec w \mode p(l)$ for some $p$.} |
168 | 165 |
\anupam{$l$ may occur freely in the programs $f^\pi_B$} |
169 | 166 |
\end{lemma} |
170 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
171 | 167 |
|
172 |
\begin{proof} |
|
173 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
|
174 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
|
168 |
|
|
169 |
\todo{Make statement above proper, with all bounds and moduli. I cut the proof to the appendix, maybe add sketch if space.} |
|
170 |
|
|
171 |
From this lemma we can readily prove the soundness result: |
|
175 | 172 |
|
176 |
|
|
177 |
\paragraph*{Negation} |
|
178 |
Can assume only on atomic formulae, so no effect. |
|
179 |
|
|
180 |
\paragraph*{Logical rules} |
|
181 |
Pairing, depairing. Need length-boundedness. |
|
182 |
|
|
183 |
If we have a left conjunction step: |
|
184 |
\[ |
|
185 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
|
186 |
\] |
|
187 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
|
173 |
\begin{proof} |
|
174 |
[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
|
175 |
(watch out for dependence on $l$, try do without) |
|
176 |
|
|
177 |
Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of, |
|
188 | 178 |
\[ |
189 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
|
190 |
\quad \implies \quad |
|
191 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
|
179 |
\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;) |
|
192 | 180 |
\] |
193 |
for some polynomial $p$. |
|
194 |
% |
|
195 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
|
196 |
|
|
197 |
|
|
198 |
Right disjunction step: |
|
199 |
\[ |
|
200 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
|
201 |
\] |
|
202 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
|
203 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
|
181 |
whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that: |
|
204 | 182 |
\[ |
205 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
|
|
183 |
\vec u \mode l = \vec a \mode l
|
|
206 | 184 |
\quad \implies \quad |
207 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))
|
|
185 |
\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
|
|
208 | 186 |
\] |
209 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
210 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
211 |
\paragraph*{Quantifiers} |
|
212 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
213 |
|
|
214 |
|
|
215 |
|
|
216 |
Sharply bounded quantifiers are generalised versions of logical rules. |
|
217 |
\[ |
|
218 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
|
219 |
\] |
|
220 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
|
221 |
\[ |
|
222 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
|
223 |
\quad \implies \quad |
|
224 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
225 |
\] |
|
226 |
with $|f|\leq q(|l|)$. |
|
227 |
|
|
228 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
|
229 |
|
|
230 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
|
231 |
|
|
232 |
|
|
233 |
Right existential: |
|
234 |
\[ |
|
235 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
|
236 |
\] |
|
237 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
|
238 |
|
|
239 |
|
|
240 |
\paragraph*{Contraction} |
|
241 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
|
242 |
|
|
243 |
\[ |
|
244 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
|
245 |
\] |
|
246 |
|
|
247 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
|
248 |
We define: |
|
249 |
\[ |
|
250 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
|
251 |
\quad \dfn \quad |
|
252 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
|
253 |
\] |
|
254 |
|
|
255 |
|
|
256 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
|
257 |
\paragraph*{Induction} |
|
258 |
Corresponds to safe recursion on notation. |
|
259 |
Suppose final step is (wlog): |
|
260 |
\[ |
|
261 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
|
262 |
\] |
|
263 |
\anupam{need to say in normal form part that can assume induction of this form} |
|
264 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
|
265 |
|
|
266 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
|
267 |
\[ |
|
268 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
|
269 |
\quad \implies \quad |
|
270 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
|
271 |
\] |
|
272 |
First let us define $ f$ as follows: |
|
273 |
\[ |
|
274 |
\begin{array}{rcl} |
|
275 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
|
276 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
|
277 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
|
278 |
\end{array} |
|
279 |
\] |
|
280 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
|
281 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
|
282 |
|
|
283 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
|
284 |
|
|
285 |
\paragraph*{Cut} |
|
286 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
|
287 |
Otherwise it is a `raisecut': |
|
288 |
\[ |
|
289 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
|
290 |
\] |
|
291 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
|
292 |
\[ |
|
293 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
|
294 |
\quad \dfn \quad |
|
295 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
|
296 |
\] |
|
297 |
\end{proof} |
|
298 |
|
|
299 |
We are now ready to prove the soundness theorem. |
|
300 |
|
|
301 |
\begin{proof} |
|
302 |
[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
|
303 |
(watch out for dependence on $l$, try do without) |
|
304 |
|
|
305 |
Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of, |
|
306 |
\[ |
|
307 |
\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;) |
|
308 |
\] |
|
309 |
whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that: |
|
310 |
\[ |
|
311 |
\vec u \mode l = \vec a \mode l |
|
312 |
\quad \implies \quad |
|
313 |
\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1 |
|
314 |
\] |
|
315 |
|
|
316 |
Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma. |
|
317 |
\end{proof} |
|
318 |
|
|
187 |
|
|
188 |
Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma. |
|
189 |
\end{proof} |
Formats disponibles : Unified diff