Révision 222 CSL17/soundness.tex

soundness.tex (revision 222)
149 149
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
150 150

  
151 151

  
152
\paragraph*{Two properties needed}
153
For below, need witnesses and functions bounded by a polynomial in $l$.
154

  
155 152
\begin{lemma}
156 153
		[Proof interpretation]
157 154
		\label{lem:proof-interp}
......
167 164
	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
168 165
	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
169 166
\end{lemma}
170
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
171 167

  
172
\begin{proof}
173
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
174
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
168

  
169
\todo{Make statement above proper, with all bounds and moduli. I cut the proof to the appendix, maybe add sketch if space.}
170

  
171
From this lemma we can readily prove the soundness result:
175 172
	
176
	
177
	\paragraph*{Negation}
178
	Can assume only on atomic formulae, so no effect.	
179
	
180
	\paragraph*{Logical rules}
181
	Pairing, depairing. Need length-boundedness.
182
	
183
	If we have a left conjunction step:
184
	\[
185
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
186
	\]
187
		By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
173
	\begin{proof}
174
		[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
175
		(watch out for dependence on $l$, try do without)
176
		
177
		Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
188 178
		\[
189
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
190
		\quad \implies \quad
191
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
179
		\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
192 180
		\]
193
	for some polynomial $p$.
194
	%
195
		We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
196
	
197
	
198
	Right disjunction step:
199
	\[
200
		\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
201
	\]
202
		$\vec f^\pi_\Delta$ remains the same as that of premiss.
203
		Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
181
		whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
204 182
		\[
205
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
183
		\vec u \mode l = \vec a \mode l
206 184
		\quad \implies \quad
207
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
185
		\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
208 186
		\]
209
		for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
210
		We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
211
	\paragraph*{Quantifiers}
212
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
213
	
214
	
215
	
216
	Sharply bounded quantifiers are generalised versions of logical rules.
217
	\[
218
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
219
	\]
220
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
221
	\[
222
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
223
	\quad \implies \quad
224
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
225
	\]
226
	with $|f|\leq q(|l|)$.
227
	
228
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
229
	
230
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
231
	
232
	
233
	Right existential:
234
	\[
235
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
236
	\]
237
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
238

  
239
	
240
	\paragraph*{Contraction}
241
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
242

  
243
	\[
244
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
245
	\]
246
	
247
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
248
	 We define:
249
	 \[
250
	 f^\pi_A ( \vec u ; \vec x , \vec w  )
251
	 \quad \dfn \quad
252
	 \cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
253
	 \]
254

  
255

  
256
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
257
	\paragraph*{Induction}
258
	Corresponds to safe recursion on notation.
259
	Suppose final step is (wlog):
260
	\[
261
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
262
	\]
263
			\anupam{need to say in normal form part that can assume induction of this form}
264
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
265
	
266
		Now, by the inductive hypothesis, we have functions $h_i$ such that:
267
		\[
268
		\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
269
		\quad \implies \quad
270
		\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
271
		\]
272
	First let us define $ f$ as follows:
273
	\[
274
	\begin{array}{rcl}
275
	 f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
276
	 f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
277
	 h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
278
	\end{array}
279
	\]
280
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
281
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
282
	
283
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
284
	
285
	\paragraph*{Cut}
286
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
287
	Otherwise it is a `raisecut':
288
	\[
289
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
290
	\]
291
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
292
	\[
293
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
294
	\quad \dfn \quad
295
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
296
	\]
297
\end{proof}
298

  
299
We are now ready to prove the soundness theorem.
300

  
301
\begin{proof}
302
	[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
303
	(watch out for dependence on $l$, try do without)
304
	
305
	Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
306
	\[
307
	\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
308
	\]
309
	whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
310
	\[
311
	\vec u \mode l = \vec a \mode l
312
	\quad \implies \quad
313
	\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
314
	\]
315

  
316
	Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
317
\end{proof}
318

  
187
		
188
		Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
189
	\end{proof}

Formats disponibles : Unified diff