Révision 222

CSL17/appendix-completeness.tex (revision 222)
1
\section{Proof of completeness}
CSL17/soundness.tex (revision 222)
149 149
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
150 150

  
151 151

  
152
\paragraph*{Two properties needed}
153
For below, need witnesses and functions bounded by a polynomial in $l$.
154

  
155 152
\begin{lemma}
156 153
		[Proof interpretation]
157 154
		\label{lem:proof-interp}
......
167 164
	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
168 165
	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
169 166
\end{lemma}
170
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
171 167

  
172
\begin{proof}
173
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
174
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
168

  
169
\todo{Make statement above proper, with all bounds and moduli. I cut the proof to the appendix, maybe add sketch if space.}
170

  
171
From this lemma we can readily prove the soundness result:
175 172
	
176
	
177
	\paragraph*{Negation}
178
	Can assume only on atomic formulae, so no effect.	
179
	
180
	\paragraph*{Logical rules}
181
	Pairing, depairing. Need length-boundedness.
182
	
183
	If we have a left conjunction step:
184
	\[
185
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
186
	\]
187
		By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
173
	\begin{proof}
174
		[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
175
		(watch out for dependence on $l$, try do without)
176
		
177
		Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
188 178
		\[
189
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
190
		\quad \implies \quad
191
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
179
		\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
192 180
		\]
193
	for some polynomial $p$.
194
	%
195
		We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
196
	
197
	
198
	Right disjunction step:
199
	\[
200
		\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
201
	\]
202
		$\vec f^\pi_\Delta$ remains the same as that of premiss.
203
		Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
181
		whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
204 182
		\[
205
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
183
		\vec u \mode l = \vec a \mode l
206 184
		\quad \implies \quad
207
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
185
		\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
208 186
		\]
209
		for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
210
		We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
211
	\paragraph*{Quantifiers}
212
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
213
	
214
	
215
	
216
	Sharply bounded quantifiers are generalised versions of logical rules.
217
	\[
218
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
219
	\]
220
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
221
	\[
222
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
223
	\quad \implies \quad
224
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
225
	\]
226
	with $|f|\leq q(|l|)$.
227
	
228
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
229
	
230
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
231
	
232
	
233
	Right existential:
234
	\[
235
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
236
	\]
237
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
238

  
239
	
240
	\paragraph*{Contraction}
241
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
242

  
243
	\[
244
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
245
	\]
246
	
247
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
248
	 We define:
249
	 \[
250
	 f^\pi_A ( \vec u ; \vec x , \vec w  )
251
	 \quad \dfn \quad
252
	 \cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
253
	 \]
254

  
255

  
256
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
257
	\paragraph*{Induction}
258
	Corresponds to safe recursion on notation.
259
	Suppose final step is (wlog):
260
	\[
261
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
262
	\]
263
			\anupam{need to say in normal form part that can assume induction of this form}
264
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
265
	
266
		Now, by the inductive hypothesis, we have functions $h_i$ such that:
267
		\[
268
		\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
269
		\quad \implies \quad
270
		\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
271
		\]
272
	First let us define $ f$ as follows:
273
	\[
274
	\begin{array}{rcl}
275
	 f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
276
	 f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
277
	 h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
278
	\end{array}
279
	\]
280
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
281
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
282
	
283
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
284
	
285
	\paragraph*{Cut}
286
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
287
	Otherwise it is a `raisecut':
288
	\[
289
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
290
	\]
291
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
292
	\[
293
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
294
	\quad \dfn \quad
295
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
296
	\]
297
\end{proof}
298

  
299
We are now ready to prove the soundness theorem.
300

  
301
\begin{proof}
302
	[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
303
	(watch out for dependence on $l$, try do without)
304
	
305
	Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
306
	\[
307
	\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
308
	\]
309
	whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
310
	\[
311
	\vec u \mode l = \vec a \mode l
312
	\quad \implies \quad
313
	\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
314
	\]
315

  
316
	Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
317
\end{proof}
318

  
187
		
188
		Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
189
	\end{proof}
CSL17/main.tex (revision 222)
93 93
\input{appendix-arithmetic}
94 94
%\input{pv-theories}	
95 95
\input{appendix-sequent-calculus}
96
\input{appendix-soundness}
97
\input{appendix-completeness}
96 98

  
97 99
\end{document}
98 100
\grid
CSL17/appendix-soundness.tex (revision 222)
1
\section{Proof of soundness}
2
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
3

  
4
\begin{proof}
5
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
6
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
7
	
8
	
9
	\paragraph*{Negation}
10
	Can assume only on atomic formulae, so no effect.	
11
	
12
	\paragraph*{Logical rules}
13
	Pairing, depairing. Need length-boundedness.
14
	
15
	If we have a left conjunction step:
16
	\[
17
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
18
	\]
19
	By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
20
	\[
21
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
22
	\quad \implies \quad
23
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
24
	\]
25
	for some polynomial $p$.
26
	%
27
	We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
28
	
29
	
30
	Right disjunction step:
31
	\[
32
	\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
33
	\]
34
	$\vec f^\pi_\Delta$ remains the same as that of premiss.
35
	Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
36
	\[
37
	\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
38
	\quad \implies \quad
39
	\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
40
	\]
41
	for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
42
	We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
43
	\paragraph*{Quantifiers}
44
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
45
	
46
	
47
	
48
	Sharply bounded quantifiers are generalised versions of logical rules.
49
	\[
50
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
51
	\]
52
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
53
	\[
54
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
55
	\quad \implies \quad
56
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
57
	\]
58
	with $|f|\leq q(|l|)$.
59
	
60
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
61
	
62
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
63
	
64
	
65
	Right existential:
66
	\[
67
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
68
	\]
69
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
70
	
71
	
72
	\paragraph*{Contraction}
73
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
74
	
75
	\[
76
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
77
	\]
78
	
79
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
80
	We define:
81
	\[
82
	f^\pi_A ( \vec u ; \vec x , \vec w  )
83
	\quad \dfn \quad
84
	\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
85
	\]
86
	
87
	
88
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
89
	\paragraph*{Induction}
90
	Corresponds to safe recursion on notation.
91
	Suppose final step is (wlog):
92
	\[
93
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
94
	\]
95
	\anupam{need to say in normal form part that can assume induction of this form}
96
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
97
	
98
	Now, by the inductive hypothesis, we have functions $h_i$ such that:
99
	\[
100
	\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
101
	\quad \implies \quad
102
	\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
103
	\]
104
	First let us define $ f$ as follows:
105
	\[
106
	\begin{array}{rcl}
107
	f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
108
	f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
109
	h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
110
	\end{array}
111
	\]
112
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
113
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
114
	
115
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
116
	
117
	\paragraph*{Cut}
118
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
119
	Otherwise it is a `raisecut':
120
	\[
121
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
122
	\]
123
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
124
	\[
125
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
126
	\quad \dfn \quad
127
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
128
	\]
129
	\end{proof}
130
	
CSL17/arithmetic.tex (revision 222)
140 140
\end{itemize}
141 141

  
142 142

  
143
\subsection{Encoding sequences in the arithmetic}
144
\todo{}
145 143

  
146
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
147 144

  
148

  
149 145
\subsection{A sequent calculus presentation}
150 146

  
151 147
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus} in Appendix~\ref{sect:app-sequent-calculus}.
......
232 228

  
233 229
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
234 230
 
235
 \begin{lemma}
236
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. 
237
 \end{lemma}
238
 
239
\subsection{Free-cut free normal form of proofs}
240
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
241

  
242
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
243
    \begin{definition}\label{def:anchoredcut}
244
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
245
  \begin{itemize}
246
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or 
247
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
248
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
249
  \end{itemize}
250
     A cut which is not anchored will also be called a \textit{free-cut}.
251
  \end{definition}
252
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
253
  \begin{itemize}
254
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
255
  \item The other premise is either of the same form or is a logical step with principal formula $A$. 
256
  \end{itemize}
257
   
258
   Now we have (see \cite{Takeuti87}): 
259
   \begin{theorem}
260
   [Free-cut elimination]\label{thm:freecutelimination}
261
   \label{thm:free-cut-elim}
262
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
263
   \end{theorem}
264
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
265
   
266
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
267
   
268
   \begin{lemma}\label{lem:welltyped}
269
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
270
 the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
271
   \end{lemma}
272
   \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
273
   \begin{proof}[Proof sketch]
274
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
275
  
276
   Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
277
   $\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
278
  
279
  Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
280
       \end{proof}
281
     
282
     \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
283
     
284
 \begin{theorem}
285
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent 
286
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
287
   \begin{enumerate}
288
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
289
    \item $\pi$ is a well-typed and integer-positive proof. 
290
   \end{enumerate}
291
   \end{theorem}
231
\todo{Present typed variable free-cut free form.}
232
\anupam{I cut-and-pasted the rest of this section into appendices to save space. Move things back gradually.}
CSL17/appendix-sequent-calculus.tex (revision 222)
73 73
	\end{array}
74 74
	\]
75 75
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
76
	\end{figure}
76
	\end{figure}
77
	
78
	
79
	
80
	 \begin{lemma}
81
	 	For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. 
82
	 \end{lemma}
83
	 
84
	 \subsection{Free-cut free normal form of proofs}
85
	 \todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
86
	 
87
	 Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
88
	 \begin{definition}\label{def:anchoredcut}
89
	 	We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
90
	 	\begin{itemize}
91
	 		\item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or 
92
	 		(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
93
	 		\item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
94
	 	\end{itemize}
95
	 	A cut which is not anchored will also be called a \textit{free-cut}.
96
	 \end{definition}
97
	 As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
98
	 \begin{itemize}
99
	 	\item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
100
	 	\item The other premise is either of the same form or is a logical step with principal formula $A$. 
101
	 \end{itemize}
102
	 
103
	 Now we have (see \cite{Takeuti87}): 
104
	 \begin{theorem}
105
	 	[Free-cut elimination]\label{thm:freecutelimination}
106
	 	\label{thm:free-cut-elim}
107
	 	Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
108
	 \end{theorem}
109
	 Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
110
	 
111
	 Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
112
	 
113
	 \begin{lemma}\label{lem:welltyped}
114
	 	If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
115
	 	the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
116
	 \end{lemma}
117
	 \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
118
	 \begin{proof}[Proof sketch]
119
	 	First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
120
	 	
121
	 	Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
122
	 	$\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
123
	 	
124
	 	Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
125
	 \end{proof}
126
	 
127
	 \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
128
	 
129
	 \begin{theorem}
130
	 	Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent 
131
	 	$\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
132
	 	\begin{enumerate}
133
	 		\item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
134
	 		\item $\pi$ is a well-typed and integer-positive proof. 
135
	 	\end{enumerate}
136
	 \end{theorem}

Formats disponibles : Unified diff