Statistiques
| Révision :

root / CSL17 / appendix-sequent-calculus.tex @ 221

Historique | Voir | Annoter | Télécharger (2,68 ko)

1
\section{Sequent calculus formalisation of $\arith^i$}
2
\label{sect:app-sequent-calculus}
3

    
4

    
5
\begin{figure}
6
	\[
7
	\small
8
	\begin{array}{l}
9
	\begin{array}{cccc}
10
	%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
11
	%& \vlinf{\id}{}{p \seqar p}{}
12
	%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
13
	%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
14
	\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
15
	& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
16
	&&
17
	\\
18
	\noalign{\bigskip}
19
	%\noalign{\bigskip}
20
	\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
21
	&
22
	\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
23
	&
24
	%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
25
	%\quad
26
	\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
27
	&
28
	%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
29
	%\quad
30
	\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
31
	\\
32
	\noalign{\bigskip}
33
	
34
	\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
35
	&
36
	
37
	\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
38
	&
39
	&
40
	%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
41
	%&
42
	%
43
	%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
44
	
45
	
46
	\\
47
	
48
	\noalign{\bigskip}
49
	%\text{Structural:} & & & \\
50
	%\noalign{\bigskip}
51
	
52
	%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
53
	%&
54
	\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
55
	%&
56
	%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
57
	&
58
	\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
59
	&
60
	&
61
	\\
62
	\noalign{\bigskip}
63
	\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
64
	&
65
	\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
66
	&
67
	\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
68
	&
69
	\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
70
	%\noalign{\bigskip}
71
	% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
72
	\end{array}
73
	\end{array}
74
	\]
75
	\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus}
76
	\end{figure}