root / CSL17 / appendix-sequent-calculus.tex @ 221
Historique | Voir | Annoter | Télécharger (2,68 ko)
1 |
\section{Sequent calculus formalisation of $\arith^i$} |
---|---|
2 |
\label{sect:app-sequent-calculus} |
3 |
|
4 |
|
5 |
\begin{figure} |
6 |
\[ |
7 |
\small |
8 |
\begin{array}{l} |
9 |
\begin{array}{cccc} |
10 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
11 |
%& \vlinf{\id}{}{p \seqar p}{} |
12 |
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
13 |
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
14 |
\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{} |
15 |
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
16 |
&& |
17 |
\\ |
18 |
\noalign{\bigskip} |
19 |
%\noalign{\bigskip} |
20 |
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
21 |
& |
22 |
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
23 |
& |
24 |
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
25 |
%\quad |
26 |
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
27 |
& |
28 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
29 |
%\quad |
30 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
31 |
\\ |
32 |
\noalign{\bigskip} |
33 |
|
34 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
35 |
& |
36 |
|
37 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
38 |
& |
39 |
& |
40 |
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
41 |
%& |
42 |
% |
43 |
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
44 |
|
45 |
|
46 |
\\ |
47 |
|
48 |
\noalign{\bigskip} |
49 |
%\text{Structural:} & & & \\ |
50 |
%\noalign{\bigskip} |
51 |
|
52 |
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
53 |
%& |
54 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
55 |
%& |
56 |
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
57 |
& |
58 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
59 |
& |
60 |
& |
61 |
\\ |
62 |
\noalign{\bigskip} |
63 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
64 |
& |
65 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
66 |
& |
67 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
68 |
& |
69 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
70 |
%\noalign{\bigskip} |
71 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
72 |
\end{array} |
73 |
\end{array} |
74 |
\] |
75 |
\caption{Sequent calculus rules, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.}\label{fig:sequentcalculus} |
76 |
\end{figure} |