Révision 221 CSL17/arithmetic.tex

arithmetic.tex (revision 221)
148 148

  
149 149
\subsection{A sequent calculus presentation}
150 150

  
151
\begin{figure}
152
\[
153
\small
154
\begin{array}{l}
155
\begin{array}{cccc}
156
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
157
%& \vlinf{\id}{}{p \seqar p}{}
158
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
159
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
160
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
161
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
162
&&
163
\\
164
\noalign{\bigskip}
165
%\noalign{\bigskip}
166
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
167
&
168
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
169
&
170
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
171
%\quad
172
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
173
&
174
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
175
%\quad
176
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
177
\\
178
\noalign{\bigskip}
151
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus} in Appendix~\ref{sect:app-sequent-calculus}.
179 152

  
180
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
181
&
182

  
183
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
184
&
185
&
186
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
187
%&
188
%
189
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
190

  
191

  
192
\\
193

  
194
\noalign{\bigskip}
195
%\text{Structural:} & & & \\
196
%\noalign{\bigskip}
197

  
198
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
199
%&
200
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
201
%&
202
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
203
&
204
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
205
&
206
&
207
\\
208
\noalign{\bigskip}
209
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
210
&
211
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
212
&
213
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
214
&
215
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
216
%\noalign{\bigskip}
217
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
218
\end{array}
219
\end{array}
220
\]
221
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
222
\end{figure}
223
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
224

  
225
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
226
 \[
227
 \begin{array}{cc}
228
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
229
\end{array}
230
\]
231
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
232
 \begin{enumerate}
233
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of   
234
$ \Gamma,  \Pi$ are called \textit{context formulas}. 
235
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
236
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).  
237
   \end{enumerate}
238
 
239
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
240
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
241

  
242
%\begin{definition}
243
%[Polynomial induction]
244
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
245
%\[
246
%A(0) 
247
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
248
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
249
%\cimp  \forall x^{\normal} . A(x)
153
%We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
154
% \[
155
% \begin{array}{cc}
156
%    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
157
%\end{array}
250 158
%\]
251
%for each formula $A(x)$.
159
% where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
160
% \begin{enumerate}
161
% \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of   
162
%$ \Gamma,  \Pi$ are called \textit{context formulas}. 
163
%\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
164
%    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).  
165
%   \end{enumerate}
166
% 
167
%%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
168
% Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
252 169
%
253
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
170
%%\begin{definition}
171
%%[Polynomial induction]
172
%%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
173
%%\[
174
%%A(0) 
175
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
176
%%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
177
%%\cimp  \forall x^{\normal} . A(x)
178
%%\]
179
%%for each formula $A(x)$.
180
%%
181
%%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
182
%%
183
%%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
184
%%\end{definition}
254 185
%
255
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
256
%\end{definition}
186
%As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$.
257 187

  
258
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
259

  
260
Actually  $\pind$ is equivalent to the following rule:
188
We extend the purely logical calculus with certain non-logical rules and initial sequents corresponding to our theories $\arith^i$.
189
 For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction} is represented by the following rule:
261 190
\begin{equation}
262 191
\label{eqn:ind-rule}
263 192
\small

Formats disponibles : Unified diff