148 |
148 |
|
149 |
149 |
\subsection{A sequent calculus presentation}
|
150 |
150 |
|
151 |
|
\begin{figure}
|
152 |
|
\[
|
153 |
|
\small
|
154 |
|
\begin{array}{l}
|
155 |
|
\begin{array}{cccc}
|
156 |
|
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
|
157 |
|
%& \vlinf{\id}{}{p \seqar p}{}
|
158 |
|
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
|
159 |
|
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
|
160 |
|
\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
|
161 |
|
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
|
162 |
|
&&
|
163 |
|
\\
|
164 |
|
\noalign{\bigskip}
|
165 |
|
%\noalign{\bigskip}
|
166 |
|
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
|
167 |
|
&
|
168 |
|
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
|
169 |
|
&
|
170 |
|
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
|
171 |
|
%\quad
|
172 |
|
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
|
173 |
|
&
|
174 |
|
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
|
175 |
|
%\quad
|
176 |
|
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
|
177 |
|
\\
|
178 |
|
\noalign{\bigskip}
|
|
151 |
We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus} in Appendix~\ref{sect:app-sequent-calculus}.
|
179 |
152 |
|
180 |
|
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
|
181 |
|
&
|
182 |
|
|
183 |
|
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta}
|
184 |
|
&
|
185 |
|
&
|
186 |
|
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
|
187 |
|
%&
|
188 |
|
%
|
189 |
|
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B}
|
190 |
|
|
191 |
|
|
192 |
|
\\
|
193 |
|
|
194 |
|
\noalign{\bigskip}
|
195 |
|
%\text{Structural:} & & & \\
|
196 |
|
%\noalign{\bigskip}
|
197 |
|
|
198 |
|
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
|
199 |
|
%&
|
200 |
|
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
|
201 |
|
%&
|
202 |
|
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
|
203 |
|
&
|
204 |
|
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
|
205 |
|
&
|
206 |
|
&
|
207 |
|
\\
|
208 |
|
\noalign{\bigskip}
|
209 |
|
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
|
210 |
|
&
|
211 |
|
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
|
212 |
|
&
|
213 |
|
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
|
214 |
|
&
|
215 |
|
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
|
216 |
|
%\noalign{\bigskip}
|
217 |
|
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
|
218 |
|
\end{array}
|
219 |
|
\end{array}
|
220 |
|
\]
|
221 |
|
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
|
222 |
|
\end{figure}
|
223 |
|
We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus}, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
|
224 |
|
|
225 |
|
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
|
226 |
|
\[
|
227 |
|
\begin{array}{cc}
|
228 |
|
\vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
|
229 |
|
\end{array}
|
230 |
|
\]
|
231 |
|
where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
|
232 |
|
\begin{enumerate}
|
233 |
|
\item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
|
234 |
|
$ \Gamma, \Pi$ are called \textit{context formulas}.
|
235 |
|
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$.
|
236 |
|
\item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
|
237 |
|
\end{enumerate}
|
238 |
|
|
239 |
|
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
|
240 |
|
Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
|
241 |
|
|
242 |
|
%\begin{definition}
|
243 |
|
%[Polynomial induction]
|
244 |
|
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
|
245 |
|
%\[
|
246 |
|
%A(0)
|
247 |
|
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
|
248 |
|
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
|
249 |
|
%\cimp \forall x^{\normal} . A(x)
|
|
153 |
%We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
|
|
154 |
% \[
|
|
155 |
% \begin{array}{cc}
|
|
156 |
% \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
|
|
157 |
%\end{array}
|
250 |
158 |
%\]
|
251 |
|
%for each formula $A(x)$.
|
|
159 |
% where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
|
|
160 |
% \begin{enumerate}
|
|
161 |
% \item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
|
|
162 |
%$ \Gamma, \Pi$ are called \textit{context formulas}.
|
|
163 |
%\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$.
|
|
164 |
% \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
|
|
165 |
% \end{enumerate}
|
|
166 |
%
|
|
167 |
%%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
|
|
168 |
% Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
|
252 |
169 |
%
|
253 |
|
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
|
|
170 |
%%\begin{definition}
|
|
171 |
%%[Polynomial induction]
|
|
172 |
%%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
|
|
173 |
%%\[
|
|
174 |
%%A(0)
|
|
175 |
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
|
|
176 |
%%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
|
|
177 |
%%\cimp \forall x^{\normal} . A(x)
|
|
178 |
%%\]
|
|
179 |
%%for each formula $A(x)$.
|
|
180 |
%%
|
|
181 |
%%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
|
|
182 |
%%
|
|
183 |
%%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
|
|
184 |
%%\end{definition}
|
254 |
185 |
%
|
255 |
|
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
|
256 |
|
%\end{definition}
|
|
186 |
%As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$.
|
257 |
187 |
|
258 |
|
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
|
259 |
|
|
260 |
|
Actually $\pind$ is equivalent to the following rule:
|
|
188 |
We extend the purely logical calculus with certain non-logical rules and initial sequents corresponding to our theories $\arith^i$.
|
|
189 |
For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction} is represented by the following rule:
|
261 |
190 |
\begin{equation}
|
262 |
191 |
\label{eqn:ind-rule}
|
263 |
192 |
\small
|