root / CSL17 / soundness.tex @ 221
Historique | Voir | Annoter | Télécharger (15,34 ko)
1 | 166 | adas | \section{Soundness} |
---|---|---|---|
2 | 168 | adas | \label{sect:soundness} |
3 | 168 | adas | |
4 | 168 | adas | The main result of this section is the following: |
5 | 168 | adas | |
6 | 168 | adas | \begin{theorem} |
7 | 202 | adas | \label{thm:soundness} |
8 | 168 | adas | If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
9 | 168 | adas | \end{theorem} |
10 | 168 | adas | |
11 | 171 | adas | |
12 | 172 | adas | |
13 | 172 | adas | The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. |
14 | 172 | adas | For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}. |
15 | 172 | adas | |
16 | 201 | adas | |
17 | 172 | adas | \begin{definition} |
18 | 172 | adas | [Length bounded basic functions] |
19 | 172 | adas | We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate: |
20 | 172 | adas | \[ |
21 | 172 | adas | x \mode l = y \mode l |
22 | 172 | adas | \] |
23 | 201 | adas | which is definable by safe recursion on $l$: |
24 | 201 | adas | \[ |
25 | 201 | adas | \begin{array}{rcl} |
26 | 201 | adas | \eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\ |
27 | 201 | adas | \eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y )) ) |
28 | 201 | adas | \end{array} |
29 | 201 | adas | \] |
30 | 202 | adas | We also define length-bounded inequality as: |
31 | 202 | adas | \[ |
32 | 202 | adas | \begin{array}{rcl} |
33 | 202 | adas | \leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\ |
34 | 202 | adas | \leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) ) |
35 | 202 | adas | \end{array} |
36 | 202 | adas | \] |
37 | 172 | adas | \end{definition} |
38 | 172 | adas | |
39 | 172 | adas | \anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
40 | 172 | adas | |
41 | 172 | adas | Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems. |
42 | 172 | adas | |
43 | 172 | adas | \begin{definition} |
44 | 172 | adas | [Length bounded characteristic functions] |
45 | 172 | adas | We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows. |
46 | 172 | adas | % If $A$ is a $\Pi_{i}$ formula then: |
47 | 172 | adas | \[ |
48 | 172 | adas | \begin{array}{rcl} |
49 | 202 | adas | \charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
50 | 172 | adas | \smallskip |
51 | 202 | adas | \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
52 | 172 | adas | \smallskip |
53 | 202 | adas | \charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\ |
54 | 172 | adas | \smallskip |
55 | 202 | adas | \charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\ |
56 | 172 | adas | \smallskip |
57 | 202 | adas | \charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\ |
58 | 172 | adas | \smallskip |
59 | 202 | adas | \charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
60 | 202 | adas | 1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
61 | 172 | adas | 0 & \text{otherwise} |
62 | 172 | adas | \end{cases} \\ |
63 | 172 | adas | \smallskip |
64 | 202 | adas | \charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
65 | 172 | adas | \begin{cases} |
66 | 173 | adas | 0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
67 | 172 | adas | 1 & \text{otherwise} |
68 | 172 | adas | \end{cases} |
69 | 172 | adas | \end{array} |
70 | 172 | adas | \] |
71 | 173 | adas | \end{definition} |
72 | 173 | adas | |
73 | 219 | adas | \anupam{Above and below definitions need to be with respect to a typing of variables which terms respect.} |
74 | 173 | adas | |
75 | 219 | adas | |
76 | 176 | adas | \begin{proposition} |
77 | 176 | adas | $\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
78 | 176 | adas | \end{proposition} |
79 | 176 | adas | |
80 | 173 | adas | \begin{definition} |
81 | 173 | adas | [Length bounded witness function] |
82 | 173 | adas | We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$. |
83 | 219 | adas | For a $\Sigma^\safe_i$ formula $A$ with free variables amongst $(\vec u ; \vec x)$, with $\vec x$ occurring only hereditarily safe in terms, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ and its \emph{bounding polynomial} $b_A (l)$ as follows: |
84 | 219 | adas | \begin{itemize} |
85 | 219 | adas | \item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$. |
86 | 219 | adas | \item If $A$ is $B \cor C$ then |
87 | 219 | adas | \[ |
88 | 219 | adas | \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
89 | 219 | adas | \quad \dfn \quad |
90 | 219 | adas | \orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) ) |
91 | 219 | adas | \] |
92 | 219 | adas | and we may set $b_A = O(b_B + b_C)$. |
93 | 219 | adas | \item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$. |
94 | 219 | adas | % \item If $A$ is $B \cand C$ then |
95 | 219 | adas | % \[ |
96 | 219 | adas | % \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
97 | 219 | adas | % \quad \dfn \quad |
98 | 219 | adas | % \andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) ) |
99 | 219 | adas | % \] |
100 | 219 | adas | % and we may set $b_A = O(b_B + b_C)$. |
101 | 219 | adas | \item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ then |
102 | 219 | adas | \[ |
103 | 219 | adas | \wit{\vec u ; \vec x}{A} |
104 | 219 | adas | \quad \dfn\quad |
105 | 219 | adas | \forall u\normal \leq |t|. |
106 | 219 | adas | \wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) ) |
107 | 219 | adas | \] |
108 | 219 | adas | appealing to Lemma~\ref{lem:sharply-bounded-recursion}, where we may set $b_A = O(b_{B(t)}^2 )$. |
109 | 219 | adas | \item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$. |
110 | 219 | adas | \item If $A$ is $\exists x^\safe . B(x) $ then |
111 | 219 | adas | \[ |
112 | 219 | adas | \wit{\vec u ; \vec x}{A} |
113 | 219 | adas | \quad \dfn \quad |
114 | 219 | adas | \wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w )) |
115 | 219 | adas | \] |
116 | 219 | adas | where $q$ is obtained by the polychecking and bounded minimisation lemmata for $\wit{\vec u ; \vec x , x}{B(x)}$. |
117 | 219 | adas | We may set $b_A = O(b_B + q )$. |
118 | 219 | adas | \end{itemize} |
119 | 219 | adas | % \[ |
120 | 219 | adas | % \begin{array}{rcl} |
121 | 219 | adas | % \wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
122 | 219 | adas | % \smallskip |
123 | 219 | adas | % \wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
124 | 219 | adas | % \smallskip |
125 | 219 | adas | % \wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
126 | 219 | adas | % \smallskip |
127 | 219 | adas | % \wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
128 | 219 | adas | % \\ |
129 | 219 | adas | % \smallskip |
130 | 219 | adas | % \wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
131 | 219 | adas | % \forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
132 | 219 | adas | % \end{array} |
133 | 219 | adas | % \] |
134 | 219 | adas | % \anupam{need length bounding for sharply bounded quantifiers} |
135 | 173 | adas | \end{definition} |
136 | 173 | adas | |
137 | 173 | adas | \anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.} |
138 | 173 | adas | |
139 | 202 | adas | \anupam{sharply bounded case obtained by sharply bounded lemma} |
140 | 202 | adas | |
141 | 202 | adas | |
142 | 202 | adas | \begin{proposition} |
143 | 205 | adas | If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true. |
144 | 202 | adas | \anupam{check statement, need proof-theoretic version?} |
145 | 202 | adas | \end{proposition} |
146 | 202 | adas | |
147 | 219 | adas | By the polychecking lemma, we can assume that such a $w$ is bounded by some polynomial in $l$. |
148 | 219 | adas | |
149 | 202 | adas | In order to prove Thm.~\ref{thm:soundness} we need the following lemma: |
150 | 202 | adas | |
151 | 202 | adas | |
152 | 219 | adas | \paragraph*{Two properties needed} |
153 | 219 | adas | For below, need witnesses and functions bounded by a polynomial in $l$. |
154 | 219 | adas | |
155 | 202 | adas | \begin{lemma} |
156 | 219 | adas | [Proof interpretation] |
157 | 219 | adas | \label{lem:proof-interp} |
158 | 219 | adas | From a normal form \todo{define, prove exists} $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma \seqar \Delta$ |
159 | 219 | adas | there are $\mubci{i-1}$ functions $\vec f^\pi (\vec u ; \vec x , w)$ (where $\vec f^\pi = (f^\pi_B)_{B\in\Delta}$) such that, for any $l, \vec u ; \vec x , w$, we have: |
160 | 202 | adas | \[ |
161 | 219 | adas | % \vec a^\nu = \vec u , |
162 | 219 | adas | % \vec b^\sigma = \vec u, |
163 | 219 | adas | \bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1 |
164 | 219 | adas | \quad \implies \quad |
165 | 219 | adas | \bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B(\vec u \mode l ; \vec x \mode l, \vec w)) = 1 |
166 | 202 | adas | \] |
167 | 219 | adas | \anupam{Need $\vec w \mode p(l)$ for some $p$.} |
168 | 219 | adas | \anupam{$l$ may occur freely in the programs $f^\pi_B$} |
169 | 202 | adas | \end{lemma} |
170 | 219 | adas | For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
171 | 219 | adas | |
172 | 202 | adas | \begin{proof} |
173 | 219 | adas | Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
174 | 202 | adas | We define the function $f$ inductively, by considering the various final rules of $\pi$. |
175 | 202 | adas | |
176 | 219 | adas | |
177 | 202 | adas | \paragraph*{Negation} |
178 | 202 | adas | Can assume only on atomic formulae, so no effect. |
179 | 219 | adas | |
180 | 219 | adas | \paragraph*{Logical rules} |
181 | 219 | adas | Pairing, depairing. Need length-boundedness. |
182 | 219 | adas | |
183 | 219 | adas | If we have a left conjunction step: |
184 | 219 | adas | \[ |
185 | 219 | adas | \vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
186 | 219 | adas | \] |
187 | 219 | adas | By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
188 | 219 | adas | \[ |
189 | 219 | adas | \Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
190 | 219 | adas | \quad \implies \quad |
191 | 219 | adas | \Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
192 | 219 | adas | \] |
193 | 219 | adas | for some polynomial $p$. |
194 | 219 | adas | % |
195 | 219 | adas | We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
196 | 219 | adas | |
197 | 219 | adas | |
198 | 219 | adas | Right disjunction step: |
199 | 219 | adas | \[ |
200 | 219 | adas | \vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
201 | 219 | adas | \] |
202 | 219 | adas | $\vec f^\pi_\Delta$ remains the same as that of premiss. |
203 | 219 | adas | Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
204 | 219 | adas | \[ |
205 | 219 | adas | \Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
206 | 219 | adas | \quad \implies \quad |
207 | 219 | adas | \Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
208 | 219 | adas | \] |
209 | 219 | adas | for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
210 | 219 | adas | We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
211 | 202 | adas | \paragraph*{Quantifiers} |
212 | 202 | adas | \anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
213 | 202 | adas | |
214 | 219 | adas | |
215 | 219 | adas | |
216 | 219 | adas | Sharply bounded quantifiers are generalised versions of logical rules. |
217 | 219 | adas | \[ |
218 | 219 | adas | \vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
219 | 219 | adas | \] |
220 | 219 | adas | By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
221 | 219 | adas | \[ |
222 | 219 | adas | \Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
223 | 219 | adas | \quad \implies \quad |
224 | 219 | adas | \Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
225 | 219 | adas | \] |
226 | 219 | adas | with $|f|\leq q(|l|)$. |
227 | 219 | adas | |
228 | 219 | adas | By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
229 | 219 | adas | |
230 | 219 | adas | We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
231 | 219 | adas | |
232 | 219 | adas | |
233 | 219 | adas | Right existential: |
234 | 219 | adas | \[ |
235 | 219 | adas | \vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
236 | 219 | adas | \] |
237 | 219 | adas | Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
238 | 219 | adas | |
239 | 219 | adas | |
240 | 202 | adas | \paragraph*{Contraction} |
241 | 202 | adas | Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
242 | 202 | adas | |
243 | 219 | adas | \[ |
244 | 219 | adas | \vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
245 | 219 | adas | \] |
246 | 219 | adas | |
247 | 219 | adas | $\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
248 | 219 | adas | We define: |
249 | 219 | adas | \[ |
250 | 219 | adas | f^\pi_A ( \vec u ; \vec x , \vec w ) |
251 | 219 | adas | \quad \dfn \quad |
252 | 219 | adas | \cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
253 | 219 | adas | \] |
254 | 219 | adas | |
255 | 219 | adas | |
256 | 219 | adas | \anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
257 | 202 | adas | \paragraph*{Induction} |
258 | 202 | adas | Corresponds to safe recursion on notation. |
259 | 219 | adas | Suppose final step is (wlog): |
260 | 205 | adas | \[ |
261 | 219 | adas | \vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
262 | 205 | adas | \] |
263 | 219 | adas | \anupam{need to say in normal form part that can assume induction of this form} |
264 | 205 | adas | For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
265 | 205 | adas | |
266 | 205 | adas | Now, by the inductive hypothesis, we have functions $h_i$ such that: |
267 | 205 | adas | \[ |
268 | 219 | adas | \Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w) |
269 | 205 | adas | \quad \implies \quad |
270 | 219 | adas | \Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) ) |
271 | 205 | adas | \] |
272 | 219 | adas | First let us define $ f$ as follows: |
273 | 205 | adas | \[ |
274 | 205 | adas | \begin{array}{rcl} |
275 | 219 | adas | f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\ |
276 | 219 | adas | f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & |
277 | 219 | adas | h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w )) |
278 | 205 | adas | \end{array} |
279 | 205 | adas | \] |
280 | 219 | adas | where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$. |
281 | 205 | adas | \anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
282 | 219 | adas | |
283 | 219 | adas | Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
284 | 219 | adas | |
285 | 219 | adas | \paragraph*{Cut} |
286 | 219 | adas | If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
287 | 219 | adas | Otherwise it is a `raisecut': |
288 | 219 | adas | \[ |
289 | 219 | adas | \vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
290 | 219 | adas | \] |
291 | 219 | adas | In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
292 | 219 | adas | \[ |
293 | 219 | adas | \vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
294 | 219 | adas | \quad \dfn \quad |
295 | 219 | adas | \vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
296 | 219 | adas | \] |
297 | 202 | adas | \end{proof} |
298 | 202 | adas | |
299 | 202 | adas | We are now ready to prove the soundness theorem. |
300 | 202 | adas | |
301 | 202 | adas | \begin{proof} |
302 | 202 | adas | [Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
303 | 202 | adas | (watch out for dependence on $l$, try do without) |
304 | 202 | adas | |
305 | 202 | adas | Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of, |
306 | 202 | adas | \[ |
307 | 202 | adas | \normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;) |
308 | 202 | adas | \] |
309 | 202 | adas | whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that: |
310 | 202 | adas | \[ |
311 | 202 | adas | \vec u \mode l = \vec a \mode l |
312 | 202 | adas | \quad \implies \quad |
313 | 205 | adas | \wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1 |
314 | 202 | adas | \] |
315 | 205 | adas | |
316 | 202 | adas | Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma. |
317 | 202 | adas | \end{proof} |