Statistiques
| Révision :

root / CSL17 / soundness.tex @ 221

Historique | Voir | Annoter | Télécharger (15,34 ko)

1 166 adas
\section{Soundness}
2 168 adas
\label{sect:soundness}
3 168 adas
4 168 adas
The main result of this section is the following:
5 168 adas
6 168 adas
\begin{theorem}
7 202 adas
	\label{thm:soundness}
8 168 adas
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
9 168 adas
\end{theorem}
10 168 adas
11 171 adas
12 172 adas
13 172 adas
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions.
14 172 adas
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}.
15 172 adas
16 201 adas
17 172 adas
\begin{definition}
18 172 adas
[Length bounded basic functions]
19 172 adas
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
20 172 adas
\[
21 172 adas
x \mode l = y \mode l
22 172 adas
\]
23 201 adas
which is definable by safe recursion on $l$:
24 201 adas
\[
25 201 adas
\begin{array}{rcl}
26 201 adas
\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\
27 201 adas
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
28 201 adas
\end{array}
29 201 adas
\]
30 202 adas
We also define length-bounded inequality as:
31 202 adas
\[
32 202 adas
\begin{array}{rcl}
33 202 adas
\leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\
34 202 adas
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) )
35 202 adas
\end{array}
36 202 adas
\]
37 172 adas
\end{definition}
38 172 adas
39 172 adas
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
40 172 adas
41 172 adas
Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
42 172 adas
43 172 adas
\begin{definition}
44 172 adas
	[Length bounded characteristic functions]
45 172 adas
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows.
46 172 adas
%	If $A$ is a $\Pi_{i}$ formula then:
47 172 adas
	\[
48 172 adas
	\begin{array}{rcl}
49 202 adas
	\charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
50 172 adas
	\smallskip
51 202 adas
	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
52 172 adas
	\smallskip
53 202 adas
	\charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
54 172 adas
	\smallskip
55 202 adas
	\charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
56 172 adas
	\smallskip
57 202 adas
	\charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
58 172 adas
	\smallskip
59 202 adas
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
60 202 adas
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
61 172 adas
	0 & \text{otherwise}
62 172 adas
	\end{cases} \\
63 172 adas
	\smallskip
64 202 adas
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn &
65 172 adas
	\begin{cases}
66 173 adas
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
67 172 adas
	1 & \text{otherwise}
68 172 adas
	\end{cases}
69 172 adas
	\end{array}
70 172 adas
	\]
71 173 adas
\end{definition}
72 173 adas
73 219 adas
\anupam{Above and below definitions need to be with respect to a typing of variables which terms respect.}
74 173 adas
75 219 adas
76 176 adas
\begin{proposition}
77 176 adas
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
78 176 adas
\end{proposition}
79 176 adas
80 173 adas
\begin{definition}
81 173 adas
	[Length bounded witness function]
82 173 adas
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.
83 219 adas
	For a $\Sigma^\safe_i$ formula $A$ with free variables amongst $(\vec u ; \vec x)$, with $\vec x$ occurring only hereditarily safe in terms, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ and its \emph{bounding polynomial} $b_A (l)$ as follows:
84 219 adas
	\begin{itemize}
85 219 adas
		\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$.
86 219 adas
		\item If $A$ is $B \cor C$ then
87 219 adas
		\[
88 219 adas
		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w)
89 219 adas
		\quad \dfn \quad
90 219 adas
		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
91 219 adas
		\]
92 219 adas
		and we may set $b_A = O(b_B + b_C)$.
93 219 adas
		\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$.
94 219 adas
%		\item If $A$ is $B \cand C$ then
95 219 adas
%			\[
96 219 adas
%			\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w)
97 219 adas
%			\quad \dfn \quad
98 219 adas
%			\andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
99 219 adas
%			\]
100 219 adas
%			and we may set $b_A = O(b_B + b_C)$.
101 219 adas
		\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ then
102 219 adas
		\[
103 219 adas
		\wit{\vec u ; \vec x}{A}
104 219 adas
		\quad \dfn\quad
105 219 adas
		\forall u\normal \leq |t|.
106 219 adas
		\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) )
107 219 adas
		\]
108 219 adas
		appealing to Lemma~\ref{lem:sharply-bounded-recursion}, where we may set $b_A = O(b_{B(t)}^2 )$.
109 219 adas
		\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$.
110 219 adas
		\item If $A$ is $\exists x^\safe . B(x) $ then
111 219 adas
		\[
112 219 adas
		\wit{\vec u ; \vec x}{A}
113 219 adas
		\quad \dfn \quad
114 219 adas
		\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w ))
115 219 adas
		\]
116 219 adas
		where $q$ is obtained by the polychecking and bounded minimisation lemmata for $\wit{\vec u ; \vec x , x}{B(x)}$.
117 219 adas
		We may set $b_A = O(b_B + q )$.
118 219 adas
	\end{itemize}
119 219 adas
%	\[
120 219 adas
%	\begin{array}{rcl}
121 219 adas
%	\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
122 219 adas
%	\smallskip
123 219 adas
%	\wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
124 219 adas
%	\smallskip
125 219 adas
%	\wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
126 219 adas
%	\smallskip
127 219 adas
%	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
128 219 adas
%	\\
129 219 adas
%	\smallskip
130 219 adas
%	\wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn &
131 219 adas
%	\forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
132 219 adas
%	\end{array}
133 219 adas
%	\]
134 219 adas
%	\anupam{need length bounding for sharply bounded quantifiers}
135 173 adas
\end{definition}
136 173 adas
137 173 adas
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
138 173 adas
139 202 adas
\anupam{sharply bounded case obtained by sharply bounded lemma}
140 202 adas
141 202 adas
142 202 adas
\begin{proposition}
143 205 adas
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true.
144 202 adas
	\anupam{check statement, need proof-theoretic version?}
145 202 adas
\end{proposition}
146 202 adas
147 219 adas
By the polychecking lemma, we can assume that such a $w$ is bounded by some polynomial in $l$.
148 219 adas
149 202 adas
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
150 202 adas
151 202 adas
152 219 adas
\paragraph*{Two properties needed}
153 219 adas
For below, need witnesses and functions bounded by a polynomial in $l$.
154 219 adas
155 202 adas
\begin{lemma}
156 219 adas
		[Proof interpretation]
157 219 adas
		\label{lem:proof-interp}
158 219 adas
	From a normal form \todo{define, prove exists} $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma  \seqar \Delta$
159 219 adas
	there are $\mubci{i-1}$ functions $\vec f^\pi (\vec u ; \vec x , w)$ (where $\vec f^\pi = (f^\pi_B)_{B\in\Delta}$) such that, for any $l, \vec u ; \vec x  , w$, we have:
160 202 adas
	\[
161 219 adas
%	\vec a^\nu = \vec u ,
162 219 adas
%	\vec b^\sigma = \vec u,
163 219 adas
	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
164 219 adas
	\quad \implies \quad
165 219 adas
	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B(\vec u \mode l ; \vec x \mode l, \vec w)) = 1
166 202 adas
	\]
167 219 adas
	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
168 219 adas
	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
169 202 adas
\end{lemma}
170 219 adas
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
171 219 adas
172 202 adas
\begin{proof}
173 219 adas
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
174 202 adas
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
175 202 adas
176 219 adas
177 202 adas
	\paragraph*{Negation}
178 202 adas
	Can assume only on atomic formulae, so no effect.
179 219 adas
180 219 adas
	\paragraph*{Logical rules}
181 219 adas
	Pairing, depairing. Need length-boundedness.
182 219 adas
183 219 adas
	If we have a left conjunction step:
184 219 adas
	\[
185 219 adas
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
186 219 adas
	\]
187 219 adas
		By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
188 219 adas
		\[
189 219 adas
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
190 219 adas
		\quad \implies \quad
191 219 adas
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
192 219 adas
		\]
193 219 adas
	for some polynomial $p$.
194 219 adas
	%
195 219 adas
		We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
196 219 adas
197 219 adas
198 219 adas
	Right disjunction step:
199 219 adas
	\[
200 219 adas
		\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
201 219 adas
	\]
202 219 adas
		$\vec f^\pi_\Delta$ remains the same as that of premiss.
203 219 adas
		Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
204 219 adas
		\[
205 219 adas
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
206 219 adas
		\quad \implies \quad
207 219 adas
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))
208 219 adas
		\]
209 219 adas
		for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
210 219 adas
		We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
211 202 adas
	\paragraph*{Quantifiers}
212 202 adas
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
213 202 adas
214 219 adas
215 219 adas
216 219 adas
	Sharply bounded quantifiers are generalised versions of logical rules.
217 219 adas
	\[
218 219 adas
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
219 219 adas
	\]
220 219 adas
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
221 219 adas
	\[
222 219 adas
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
223 219 adas
	\quad \implies \quad
224 219 adas
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
225 219 adas
	\]
226 219 adas
	with $|f|\leq q(|l|)$.
227 219 adas
228 219 adas
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
229 219 adas
230 219 adas
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
231 219 adas
232 219 adas
233 219 adas
	Right existential:
234 219 adas
	\[
235 219 adas
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
236 219 adas
	\]
237 219 adas
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
238 219 adas
239 219 adas
240 202 adas
	\paragraph*{Contraction}
241 202 adas
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
242 202 adas
243 219 adas
	\[
244 219 adas
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
245 219 adas
	\]
246 219 adas
247 219 adas
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
248 219 adas
	 We define:
249 219 adas
	 \[
250 219 adas
	 f^\pi_A ( \vec u ; \vec x , \vec w  )
251 219 adas
	 \quad \dfn \quad
252 219 adas
	 \cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
253 219 adas
	 \]
254 219 adas
255 219 adas
256 219 adas
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
257 202 adas
	\paragraph*{Induction}
258 202 adas
	Corresponds to safe recursion on notation.
259 219 adas
	Suppose final step is (wlog):
260 205 adas
	\[
261 219 adas
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
262 205 adas
	\]
263 219 adas
			\anupam{need to say in normal form part that can assume induction of this form}
264 205 adas
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
265 205 adas
266 205 adas
		Now, by the inductive hypothesis, we have functions $h_i$ such that:
267 205 adas
		\[
268 219 adas
		\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
269 205 adas
		\quad \implies \quad
270 219 adas
		\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
271 205 adas
		\]
272 219 adas
	First let us define $ f$ as follows:
273 205 adas
	\[
274 205 adas
	\begin{array}{rcl}
275 219 adas
	 f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
276 219 adas
	 f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn &
277 219 adas
	 h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
278 205 adas
	\end{array}
279 205 adas
	\]
280 219 adas
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
281 205 adas
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
282 219 adas
283 219 adas
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
284 219 adas
285 219 adas
	\paragraph*{Cut}
286 219 adas
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
287 219 adas
	Otherwise it is a `raisecut':
288 219 adas
	\[
289 219 adas
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
290 219 adas
	\]
291 219 adas
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
292 219 adas
	\[
293 219 adas
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
294 219 adas
	\quad \dfn \quad
295 219 adas
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
296 219 adas
	\]
297 202 adas
\end{proof}
298 202 adas
299 202 adas
We are now ready to prove the soundness theorem.
300 202 adas
301 202 adas
\begin{proof}
302 202 adas
	[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
303 202 adas
	(watch out for dependence on $l$, try do without)
304 202 adas
305 202 adas
	Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
306 202 adas
	\[
307 202 adas
	\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
308 202 adas
	\]
309 202 adas
	whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
310 202 adas
	\[
311 202 adas
	\vec u \mode l = \vec a \mode l
312 202 adas
	\quad \implies \quad
313 205 adas
	\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
314 202 adas
	\]
315 205 adas
316 202 adas
	Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
317 202 adas
\end{proof}