root / CSL17 / appendix-arithmetic.tex @ 220
Historique | Voir | Annoter | Télécharger (3,06 ko)
1 |
\section{An arithmetic for the polynomial hierarchy}\label{appendix:arithmetic} |
---|---|
2 |
|
3 |
We give here the list of remaining axioms of $\basic$, which are directly inspired by the $\basic$ theory of Buss's bounded arithmetic \cite{Buss86book}: |
4 |
%$\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
5 |
|
6 |
|
7 |
\[ |
8 |
\begin{array}{l} |
9 |
\safe (0) \\ |
10 |
\forall x^\safe . \safe (\succ{} x) \\ |
11 |
\forall x^\safe . 0 \neq \succ{} (x) \\ |
12 |
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
13 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y )\\ |
14 |
\forall x^\safe, y^\safe . \safe(x+y)\\ |
15 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
16 |
\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
17 |
\forall u^\normal \safe(u) \\ |
18 |
\forall u^\safe \safe(\hlf{u})\\ |
19 |
\forall u^\normal \safe(|x|) |
20 |
\end{array} |
21 |
\] |
22 |
|
23 |
$$ |
24 |
%\begin{equation} |
25 |
\begin{array}{l} |
26 |
\forall x^{\safe}, y^{\safe}. (y\leq x) \cimp (y \leq \succ{} x) \\ |
27 |
\forall x^{\safe}. x \neq \succ{} x\\ |
28 |
\forall x^{\safe}.0 \leq x\\ |
29 |
\forall x^{\safe}, y^{\safe}.(x\leq y \cand x \neq y) \leftrightarrow \succ{} x \leq y\\ |
30 |
\forall x^{\safe}. x\neq 0 \cimp \succ{0}x \neq 0\\ |
31 |
\forall x^{\safe}, y^{\safe}. y\leq x \cor x \leq y\\ |
32 |
\forall x^{\safe}, y^{\safe}. x\leq y \cand y\leq x \cimp x=y\\ |
33 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. x\leq y \cand y\leq z \cimp x\leq z\\ |
34 |
|0|=0\\ |
35 |
\forall x^{\safe}, y^{\safe}.x\neq 0 \cimp |\succ{0}x|=\succ{}( |x|) \cand |\succ{0}x|= \succ{}(|x|) \\ |
36 |
|\succ{}0|=\succ{} 0\\ |
37 |
\forall x^{\safe}, y^{\safe}. x\leq y \cimp |x|\leq |y|\\ |
38 |
\forall x^{\safe}, y^{\normal}. |x\smsh y|=\succ{}( |x|\cdot |y|)\\ |
39 |
\forall y^{\normal}. 0 \smsh y=\succ{} 0\\ |
40 |
\forall x^{\safe}. x\neq 0 \cimp 1 \smsh(\succ{0}x)=\succ{0}(1\smsh x) \cand 1 \smsh(\succ{1}x)=\succ{0}(1\smsh x)\\ |
41 |
\forall x^{\normal}, y^{\normal}. x \smsh y = y \smsh x\\ |
42 |
\forall x^{\safe}, y^{\safe}, z^{\normal}. |x|= |y| \cimp x\smsh z = y\smsh z\\ |
43 |
\forall x^{\safe}, u^{\safe}, v^{\safe}, y^{\normal}. |x|= |u|+ |v| \cimp x\smsh y=(u\smsh y)\cdot (v\smsh y)\\ |
44 |
\forall x^{\safe}, y^{\safe}. x\leq x+y\\ |
45 |
\forall x^{\safe}, y^{\safe}. x\leq y \cand x\neq y \cimp \succ{}(\succ{0}x) \leq \succ{0}y \cand \succ{}(\succ{0}x) \neq \succ{0}y\\ |
46 |
\forall x^{\safe}, y^{\safe}. x+y=y+x\\ |
47 |
\forall x^{\safe}. x+0=x\\ |
48 |
\forall x^{\safe}, y^{\safe}. x+\succ{}y=\succ{}(x+y)\\ |
49 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. (x+y)+z=x+(y+z)\\ |
50 |
\forall x^{\safe}, y^{\safe}, z^{\safe}. x+y \leq x+z \leftrightarrow y\leq z\\ |
51 |
\forall x^{\normal} x\cdot 0=0\\ |
52 |
\forall x^{\normal}, y^{\safe}. x\cdot(\succ{}y)=(x\cdot y)+x\\ |
53 |
\forall x^{\normal}, y^{\normal}. x\cdot y=y\cdot x\\ |
54 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. x\cdot(y+z)=(x\cdot y)+(x\cdot z)\\ |
55 |
\forall x^{\normal}, y^{\safe}, z^{\safe}. x\geq \succ{} 0 \cimp (x\cdot y \leq x\cdot z \leftrightarrow y\leq z)\\ |
56 |
\forall x^{\normal} x\neq 0 \cimp |x|=\succ{}(\hlf{x})\\ |
57 |
\forall x^{\safe}, y^{\normal}. x= \hlf{y} \leftrightarrow (\succ{0}x=y \cor \succ{}(\succ{0}x)=y) |
58 |
\end{array} |
59 |
%\end{equation} |
60 |
$$ |