Révision 220 CSL17/sequence-coding.tex

sequence-coding.tex (revision 220)
65 65
	Length induction on $l$.
66 66
\end{proof}
67 67

  
68

  
69
\subsection{Summary}
70
Assume the existence of a simple pairing function for elements of fixed size: $\pair{k,l}{x}{y}$ denotes the pair $(x \mode k , y \mode l )$.
71
An appropriate such function would `interleave' $x$ and $y$, adding delimiters as necessary.
72
We assume that $|\pair{k,l}{x}{y}| = k+O(l)$ and $\pair{k,l}{x}{y}$ satisfies the polychecking lemma.
73

  
74
We will simply write $\pair{l}{x}{y}$ for $\pair{l,l}{x}{y}$.
75

  
76
\begin{lemma}
77
	[Creating sequences]
78
	\label{lem:sequence-creation}
79
	Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x)$ such that:
80
	\[
81
	F(l,u,\vec u ; \vec x)
82
	\quad = \quad
83
	\langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l , \dots , f(|u|, \vec u ; \vec x) \mode l \rangle
84
	\]
85
\end{lemma}
86
\begin{proof}
87
	We simply define $F$ by safe recursion from $f$:
88
	\[
89
	\begin{array}{rcl}
90
	F(l,0, \vec u ; \vec x) & \dfn & \langle ; f(0) \mode l \rangle \\
91
	F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{O(|u| l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )}
92
	\end{array}
93
	\]
94
	where the constants for $O(|u|l)$ are sufficiently large.
95
\end{proof}
96

  
97
\begin{lemma}
98
[Decoding sequences]
99
We can define $\beta(l,i;x)$ as $(i\text{th element of x}) \mode l$.	
100
\end{lemma}
101
\begin{proof}
102
First define $\beta (j,i;x)$ as $j$th bit of $i$th element of $x$, then use similar idea to above, by a recursion on $j$.
103
\end{proof}
104

  
105
Notice that $\beta (l,i;x)$ satisfies the polychecking lemma.
106

  
107
We define

Formats disponibles : Unified diff