Révision 219 CSL17/soundness.tex

soundness.tex (revision 219)
70 70
	\]
71 71
\end{definition}
72 72

  
73
\anupam{Above and below definitions need to be with respect to a typing of variables which terms respect.}
73 74

  
75

  
74 76
\begin{proposition}
75 77
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
76 78
\end{proposition}
......
78 80
\begin{definition}
79 81
	[Length bounded witness function]
80 82
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.
81
	\[
82
	\begin{array}{rcl}
83
	\Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
84
	\smallskip
85
	\Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
86
	\smallskip
87
	\Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
88
	\smallskip
89
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
90
	\\
91
	\smallskip
92
	\Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
93
	\forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
94
	\end{array}
95
	\]
83
	For a $\Sigma^\safe_i$ formula $A$ with free variables amongst $(\vec u ; \vec x)$, with $\vec x$ occurring only hereditarily safe in terms, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ and its \emph{bounding polynomial} $b_A (l)$ as follows:
84
	\begin{itemize}
85
		\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$.
86
		\item If $A$ is $B \cor C$ then 
87
		\[
88
		\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) 
89
		\quad \dfn \quad
90
		\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
91
		\]
92
		and we may set $b_A = O(b_B + b_C)$.
93
		\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$.
94
%		\item If $A$ is $B \cand C$ then
95
%			\[
96
%			\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) 
97
%			\quad \dfn \quad
98
%			\andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) )  )
99
%			\]
100
%			and we may set $b_A = O(b_B + b_C)$.
101
		\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ then 
102
		\[
103
		\wit{\vec u ; \vec x}{A}
104
		\quad \dfn\quad
105
		\forall u\normal \leq |t|.
106
		\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) )
107
		\]
108
		appealing to Lemma~\ref{lem:sharply-bounded-recursion}, where we may set $b_A = O(b_{B(t)}^2 )$.
109
		\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$.
110
		\item If $A$ is $\exists x^\safe . B(x) $ then
111
		\[
112
		\wit{\vec u ; \vec x}{A}
113
		\quad \dfn \quad
114
		\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w ))
115
		\]
116
		where $q$ is obtained by the polychecking and bounded minimisation lemmata for $\wit{\vec u ; \vec x , x}{B(x)}$.
117
		We may set $b_A = O(b_B + q )$.
118
	\end{itemize}
119
%	\[
120
%	\begin{array}{rcl}
121
%	\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
122
%	\smallskip
123
%	\wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
124
%	\smallskip
125
%	\wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
126
%	\smallskip
127
%	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
128
%	\\
129
%	\smallskip
130
%	\wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
131
%	\forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
132
%	\end{array}
133
%	\]
134
%	\anupam{need length bounding for sharply bounded quantifiers}
96 135
\end{definition}
97 136

  
98 137
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
......
105 144
	\anupam{check statement, need proof-theoretic version?}
106 145
\end{proposition}
107 146

  
147
By the polychecking lemma, we can assume that such a $w$ is bounded by some polynomial in $l$.
148

  
108 149
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
109 150

  
110 151

  
152
\paragraph*{Two properties needed}
153
For below, need witnesses and functions bounded by a polynomial in $l$.
154

  
111 155
\begin{lemma}
112
	[Proof interpretation]
113
	\label{lem:proof-interp}
114
	For any $\arith^i$ proof of a $\Sigma^\safe_i$ sequent $\Gamma \seqar \Delta$, there is a $\mubci{i-1}$ function $f$ such that, for any $l, \vec u , \vec x  , w$, we have:
156
		[Proof interpretation]
157
		\label{lem:proof-interp}
158
	From a normal form \todo{define, prove exists} $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma  \seqar \Delta$
159
	there are $\mubci{i-1}$ functions $\vec f^\pi (\vec u ; \vec x , w)$ (where $\vec f^\pi = (f^\pi_B)_{B\in\Delta}$) such that, for any $l, \vec u ; \vec x  , w$, we have:
115 160
	\[
116
	\wit{\vec u ; \vec x}{ \wedge \Gamma } (l, \vec u ; \vec x , w) 
117
	\quad \leq \quad
118
	\wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w))
161
%	\vec a^\nu = \vec u ,
162
%	\vec b^\sigma = \vec u, 
163
	\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1
164
	\quad \implies \quad
165
	\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B(\vec u \mode l ; \vec x \mode l, \vec w)) = 1
119 166
	\]
120
	\anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$}
121
	\anupam{Also, perhaps split for formulae of $\Gamma$, to avoid lots of (de)coding}
167
	\anupam{Need $\vec w \mode p(l)$ for some $p$.}
168
	\anupam{$l$ may occur freely in the programs $f^\pi_B$}
122 169
\end{lemma}
170
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context.
171

  
123 172
\begin{proof}
124
	We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section.
125
	This means that the predicate $\charfn{\vec u ; \vec x}{A}$ is defined for each formula $A(\vec u ; \vec x)$ occurring in a proof, so the theorem is well-stated.
173
	Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$.
126 174
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
127 175
	
176
	
128 177
	\paragraph*{Negation}
129 178
	Can assume only on atomic formulae, so no effect.	
179
	
180
	\paragraph*{Logical rules}
181
	Pairing, depairing. Need length-boundedness.
182
	
183
	If we have a left conjunction step:
184
	\[
185
	\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta}
186
	\]
187
		By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that,
188
		\[
189
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w)
190
		\quad \implies \quad
191
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) ))
192
		\]
193
	for some polynomial $p$.
194
	%
195
		We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$.
196
	
197
	
198
	Right disjunction step:
199
	\[
200
		\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B }
201
	\]
202
		$\vec f^\pi_\Delta$ remains the same as that of premiss.
203
		Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that:
204
		\[
205
		\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w)
206
		\quad \implies \quad
207
		\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) ))		
208
		\]
209
		for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH).
210
		We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$.
130 211
	\paragraph*{Quantifiers}
131 212
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
132 213
	
214
	
215
	
216
	Sharply bounded quantifiers are generalised versions of logical rules.
217
	\[
218
	\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar  \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar  \Delta, A(u)  }
219
	\]
220
	By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that:
221
	\[
222
	\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w )
223
	\quad \implies \quad
224
	\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) )
225
	\]
226
	with $|f|\leq q(|l|)$.
227
	
228
	By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that....
229
	
230
	We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w  )$.
231
	
232
	
233
	Right existential:
234
	\[
235
	\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)}
236
	\]
237
	Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form.
238

  
239
	
133 240
	\paragraph*{Contraction}
134 241
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
135 242

  
243
	\[
244
	\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A}
245
	\]
246
	
247
	$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss.
248
	 We define:
249
	 \[
250
	 f^\pi_A ( \vec u ; \vec x , \vec w  )
251
	 \quad \dfn \quad
252
	 \cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w)  )
253
	 \]
254

  
255

  
256
	\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. }
136 257
	\paragraph*{Induction}
137 258
	Corresponds to safe recursion on notation.
138
	Suppose final step is:
259
	Suppose final step is (wlog):
139 260
	\[
140
	\vlinf{\pind}{}{\Gamma , \normal (t) , A(0) \seqar A(t) , \Delta}{ \left\{\Gamma , \normal (u) , A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
261
	\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma,  A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
141 262
	\]
263
			\anupam{need to say in normal form part that can assume induction of this form}
142 264
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
143 265
	
144 266
		Now, by the inductive hypothesis, we have functions $h_i$ such that:
145 267
		\[
146
		\wit{u , \vec u ; \vec x}{LHS} (l , u , \vec u ; \vec x ,  w) =1
268
		\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x ,  \vec w)
147 269
		\quad \implies \quad
148
		\wit{u , \vec u ; \vec x}{RHS} (l , u , \vec u ; \vec x ,  h_i (u \mode l , \vec u \mode l ; \vec x \mode l) ) =1
270
		\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x ,  h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
149 271
		\]
150
	We define $ f$ as follows:
272
	First let us define $ f$ as follows:
151 273
	\[
152 274
	\begin{array}{rcl}
153
	 f (0 , \vec u ; \vec x, \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn &  w^{A(0)} \\
154
	 f( \succ i u , \vec u ; \vec x , \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn & 
155
	 h_i (u , \vec u ; \vec x , \vec w^\Gamma w^{\normal (?)}, f(u , \vec u ; \vec x , \vec w ))
275
	 f (0 , \vec u ; \vec x, \vec w,  w ) & \dfn &  w\\
276
	 f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn & 
277
	 h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
156 278
	\end{array}
157 279
	\]
158
	\anupam{Must check above, could be problems in recursive case.}
280
	where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
159 281
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
282
	
283
	Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$.
284
	
285
	\paragraph*{Cut}
286
	If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position.
287
	Otherwise it is a `raisecut':
288
	\[
289
	\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe  . A(x) }{ \normal (u)  , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta }
290
	\]
291
	In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as:
292
	\[
293
	\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w )
294
	\quad \dfn \quad
295
	\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w )
296
	\]
160 297
\end{proof}
161 298

  
162 299
We are now ready to prove the soundness theorem.

Formats disponibles : Unified diff