Révision 219 CSL17/soundness.tex
soundness.tex (revision 219) | ||
---|---|---|
70 | 70 |
\] |
71 | 71 |
\end{definition} |
72 | 72 |
|
73 |
\anupam{Above and below definitions need to be with respect to a typing of variables which terms respect.} |
|
73 | 74 |
|
75 |
|
|
74 | 76 |
\begin{proposition} |
75 | 77 |
$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
76 | 78 |
\end{proposition} |
... | ... | |
78 | 80 |
\begin{definition} |
79 | 81 |
[Length bounded witness function] |
80 | 82 |
We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$. |
81 |
\[ |
|
82 |
\begin{array}{rcl} |
|
83 |
\Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
|
84 |
\smallskip |
|
85 |
\Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
|
86 |
\smallskip |
|
87 |
\Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
|
88 |
\smallskip |
|
89 |
\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
|
90 |
\\ |
|
91 |
\smallskip |
|
92 |
\Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
|
93 |
\forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
|
94 |
\end{array} |
|
95 |
\] |
|
83 |
For a $\Sigma^\safe_i$ formula $A$ with free variables amongst $(\vec u ; \vec x)$, with $\vec x$ occurring only hereditarily safe in terms, we define the \emph{length-bounded witness function} $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w)$ and its \emph{bounding polynomial} $b_A (l)$ as follows: |
|
84 |
\begin{itemize} |
|
85 |
\item If $A$ is $\Pi^\safe_{i-1}$ then $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) \dfn \charfn{\vec u ; \vec x}{A} (l, \vec u ; \vec x )$. |
|
86 |
\item If $A$ is $B \cor C$ then |
|
87 |
\[ |
|
88 |
\wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
|
89 |
\quad \dfn \quad |
|
90 |
\orfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) ) |
|
91 |
\] |
|
92 |
and we may set $b_A = O(b_B + b_C)$. |
|
93 |
\item Similarly if $A $ is $B \cand C$, but with $\andfn$ in place of $\orfn$. |
|
94 |
% \item If $A$ is $B \cand C$ then |
|
95 |
% \[ |
|
96 |
% \wit{\vec u ; \vec x}{A} (l, \vec u ;\vec x , w) |
|
97 |
% \quad \dfn \quad |
|
98 |
% \andfn ( ; \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , \beta (b_B (l) , 0 ; w ) ) , \wit{\vec u ; \vec x}{C} (l, \vec u ; \vec x , \beta (b_C (l) , 0 ; w ) ) ) |
|
99 |
% \] |
|
100 |
% and we may set $b_A = O(b_B + b_C)$. |
|
101 |
\item If $A$ is $\forall u \leq |t(\vec u;)| . B(u)$ then |
|
102 |
\[ |
|
103 |
\wit{\vec u ; \vec x}{A} |
|
104 |
\quad \dfn\quad |
|
105 |
\forall u\normal \leq |t|. |
|
106 |
\wit{u, \vec u ; \vec x}{B(u)} (l, u, \vec u ; \vec x , \beta( b_{B(t)} (l) , u ; w ) ) |
|
107 |
\] |
|
108 |
appealing to Lemma~\ref{lem:sharply-bounded-recursion}, where we may set $b_A = O(b_{B(t)}^2 )$. |
|
109 |
\item Similarly if $A$ is $\exists u^\normal \leq |t(\vec u;)|. A'(u)$, but with $\exists u \leq |t|$ in place of $\forall u \leq |t|$. |
|
110 |
\item If $A$ is $\exists x^\safe . B(x) $ then |
|
111 |
\[ |
|
112 |
\wit{\vec u ; \vec x}{A} |
|
113 |
\quad \dfn \quad |
|
114 |
\wit{\vec u ; \vec x , x}{B(x)} ( l, \vec u ; \vec x , \beta( b_{B} (l) , 0;w ) , \beta (q(l) , 1 ;w )) |
|
115 |
\] |
|
116 |
where $q$ is obtained by the polychecking and bounded minimisation lemmata for $\wit{\vec u ; \vec x , x}{B(x)}$. |
|
117 |
We may set $b_A = O(b_B + q )$. |
|
118 |
\end{itemize} |
|
119 |
% \[ |
|
120 |
% \begin{array}{rcl} |
|
121 |
% \wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
|
122 |
% \smallskip |
|
123 |
% \wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
|
124 |
% \smallskip |
|
125 |
% \wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
|
126 |
% \smallskip |
|
127 |
% \wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
|
128 |
% \\ |
|
129 |
% \smallskip |
|
130 |
% \wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
|
131 |
% \forall u \leq |t(\vec u;)| . \wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
|
132 |
% \end{array} |
|
133 |
% \] |
|
134 |
% \anupam{need length bounding for sharply bounded quantifiers} |
|
96 | 135 |
\end{definition} |
97 | 136 |
|
98 | 137 |
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.} |
... | ... | |
105 | 144 |
\anupam{check statement, need proof-theoretic version?} |
106 | 145 |
\end{proposition} |
107 | 146 |
|
147 |
By the polychecking lemma, we can assume that such a $w$ is bounded by some polynomial in $l$. |
|
148 |
|
|
108 | 149 |
In order to prove Thm.~\ref{thm:soundness} we need the following lemma: |
109 | 150 |
|
110 | 151 |
|
152 |
\paragraph*{Two properties needed} |
|
153 |
For below, need witnesses and functions bounded by a polynomial in $l$. |
|
154 |
|
|
111 | 155 |
\begin{lemma} |
112 |
[Proof interpretation] |
|
113 |
\label{lem:proof-interp} |
|
114 |
For any $\arith^i$ proof of a $\Sigma^\safe_i$ sequent $\Gamma \seqar \Delta$, there is a $\mubci{i-1}$ function $f$ such that, for any $l, \vec u , \vec x , w$, we have: |
|
156 |
[Proof interpretation] |
|
157 |
\label{lem:proof-interp} |
|
158 |
From a normal form \todo{define, prove exists} $\arith^i$ proof $\pi$ of a $\Sigma^\safe_i$ sequent $\normal(\vec u), \safe(\vec x) , \Gamma \seqar \Delta$ |
|
159 |
there are $\mubci{i-1}$ functions $\vec f^\pi (\vec u ; \vec x , w)$ (where $\vec f^\pi = (f^\pi_B)_{B\in\Delta}$) such that, for any $l, \vec u ; \vec x , w$, we have: |
|
115 | 160 |
\[ |
116 |
\wit{\vec u ; \vec x}{ \wedge \Gamma } (l, \vec u ; \vec x , w) |
|
117 |
\quad \leq \quad |
|
118 |
\wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w)) |
|
161 |
% \vec a^\nu = \vec u , |
|
162 |
% \vec b^\sigma = \vec u, |
|
163 |
\bigwedge\limits_{A \in \Gamma} \wit{\vec u ; \vec x}{ A} (l, \vec u ; \vec x , w_A) =1 |
|
164 |
\quad \implies \quad |
|
165 |
\bigvee\limits_{B\in \Delta} \wit{\vec u ; \vec x}{B} (l, \vec u ; \vec x , f^\pi_B(\vec u \mode l ; \vec x \mode l, \vec w)) = 1 |
|
119 | 166 |
\] |
120 |
\anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$}
|
|
121 |
\anupam{Also, perhaps split for formulae of $\Gamma$, to avoid lots of (de)coding}
|
|
167 |
\anupam{Need $\vec w \mode p(l)$ for some $p$.}
|
|
168 |
\anupam{$l$ may occur freely in the programs $f^\pi_B$}
|
|
122 | 169 |
\end{lemma} |
170 |
For the implication above, let us simply refer to the LHS as $\Wit{\vec u ; \vec x}{\Gamma} (l , \vec u ; \vec x , \vec w)$ and the RHS as $\Wit{\vec u ; \vec x}{ \Delta} (l, \vec u ; \vec x , \vec w')$, with $\vec w'$ in place of $\vec f( \cdots )$, which is a slight abuse of notation: we assume that LHS and RHS are clear from context. |
|
171 |
|
|
123 | 172 |
\begin{proof} |
124 |
We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section. |
|
125 |
This means that the predicate $\charfn{\vec u ; \vec x}{A}$ is defined for each formula $A(\vec u ; \vec x)$ occurring in a proof, so the theorem is well-stated. |
|
173 |
Since the proof is in typed variable normal form we have that each line of the proof is of the same form, i.e.\ $\normal (\vec u), \safe (\vec x) , \Gamma \seqar \Delta$ over free variables $\vec u ; \vec x$. |
|
126 | 174 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
127 | 175 |
|
176 |
|
|
128 | 177 |
\paragraph*{Negation} |
129 | 178 |
Can assume only on atomic formulae, so no effect. |
179 |
|
|
180 |
\paragraph*{Logical rules} |
|
181 |
Pairing, depairing. Need length-boundedness. |
|
182 |
|
|
183 |
If we have a left conjunction step: |
|
184 |
\[ |
|
185 |
\vlinf{\lefrul{\cand}}{}{ \normal (\vec u ), \safe (\vec x) , A\cand B , \Gamma \seqar \Delta }{ \normal (\vec u ), \safe (\vec x) , A, B , \Gamma \seqar \Delta} |
|
186 |
\] |
|
187 |
By inductive hypothesis we have functions $\vec f (\vec u ; \vec x , w_A , w_B , \vec w)$ such that, |
|
188 |
\[ |
|
189 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , w_A , w_B , \vec w) |
|
190 |
\quad \implies \quad |
|
191 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , \vec f ( (\vec u ; \vec x) \mode l , (w_A , w_B , \vec w) \mode p(l) )) |
|
192 |
\] |
|
193 |
for some polynomial $p$. |
|
194 |
% |
|
195 |
We define $\vec f^\pi (\vec u ; \vec x , w , \vec w) \dfn \vec f (\vec u ; \vec x , \beta (p(l),0; w) , \beta(p(l),1;w),\vec w )$ and, by the bounding polynomial for pairing, it suffices to set $p^\pi = O(p)$. |
|
196 |
|
|
197 |
|
|
198 |
Right disjunction step: |
|
199 |
\[ |
|
200 |
\vlinf{\rigrul{\cor}}{}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta , A \cor B}{ \normal (\vec u ), \safe (\vec x) , \Gamma \seqar \Delta, A, B } |
|
201 |
\] |
|
202 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. |
|
203 |
Let $f_A, f_B$ be the functions corresponding to $A$ and $B$ in the premiss, so that: |
|
204 |
\[ |
|
205 |
\Wit{\vec u ; \vec x}{\Gamma} (l, \vec u ; \vec x , \vec w) |
|
206 |
\quad \implies \quad |
|
207 |
\Wit{\vec u ; \vec x}{\Delta} (l, \vec u ; \vec x , f_C ( (\vec u ; \vec x) \mode l , \vec w \mode p(l) )) |
|
208 |
\] |
|
209 |
for $C = A,B$ and for some $p$, such that $f_A , f_B$ are bounded by $q(l)$ (again by IH). |
|
210 |
We define $f^\pi_{A\cor B} (\vec u ; \vec x, \vec w) \dfn \pair{q(l)}{f_A ((\vec u ; \vec x, \vec w))}{f_B ((\vec u ; \vec x, \vec w))}$. |
|
130 | 211 |
\paragraph*{Quantifiers} |
131 | 212 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
132 | 213 |
|
214 |
|
|
215 |
|
|
216 |
Sharply bounded quantifiers are generalised versions of logical rules. |
|
217 |
\[ |
|
218 |
\vlinf{|\forall|}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , \forall u^\normal \leq |t(\vec u;)| . A(u) }{ \normal(u) , \normal (\vec u) , \safe (\vec x) , u \leq |t(\vec u;)| , \Gamma \seqar \Delta, A(u) } |
|
219 |
\] |
|
220 |
By the inductive hypothesis we have functions $\vec f(u , \vec u ; \vec x , w , \vec w)$ such that: |
|
221 |
\[ |
|
222 |
\Wit{u ,\vec u ; \vec x}{\lhs} ( u , \vec u ;\vec x , w , \vec w ) |
|
223 |
\quad \implies \quad |
|
224 |
\Wit{u , \vec u ; \vec x}{\rhs} (u, \vec u ; \vec x , \vec f ((\vec u ; \vec x) \mode l , \vec w \mode p(l) ) ) |
|
225 |
\] |
|
226 |
with $|f|\leq q(|l|)$. |
|
227 |
|
|
228 |
By Lemma~\ref{lem:sequence-creation}, we have a function $F (l , u , \vec u ; \vec x , w , \vec w) $ such that.... |
|
229 |
|
|
230 |
We set $f^\pi_{\forall u^\normal \leq t . A} (\vec u ; \vec x , \vec w) \dfn F(q(|l|), t(\vec u;), \vec u ; \vec x , 0, \vec w )$. |
|
231 |
|
|
232 |
|
|
233 |
Right existential: |
|
234 |
\[ |
|
235 |
\vlinf{\rigrul{\exists}}{}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , \exists x . A(x)}{\normal(\vec u ) , \safe (\vec x) , \Gamma \seqar \Delta , A(t)} |
|
236 |
\] |
|
237 |
Here we assume the variables of $t$ are amongst $(\vec u ; \vec x)$, since we are in typed variable normal form. |
|
238 |
|
|
239 |
|
|
133 | 240 |
\paragraph*{Contraction} |
134 | 241 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
135 | 242 |
|
243 |
\[ |
|
244 |
\vlinf{\cntr}{}{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A }{\normal (\vec u) , \safe (\vec x) , \Gamma \seqar \Delta , A , A} |
|
245 |
\] |
|
246 |
|
|
247 |
$\vec f^\pi_\Delta$ remains the same as that of premiss. Let $f_0 ,f_1$ correspond to the two copies of $A$ in the premiss. |
|
248 |
We define: |
|
249 |
\[ |
|
250 |
f^\pi_A ( \vec u ; \vec x , \vec w ) |
|
251 |
\quad \dfn \quad |
|
252 |
\cond (; \wit{\vec u ; \vec x}{A} ( l , \vec u ; \vec x , f_0(\vec u ; \vec x , \vec w) ) , f_1(\vec u ; \vec x , \vec w) , f_0(\vec u ; \vec x , \vec w) ) |
|
253 |
\] |
|
254 |
|
|
255 |
|
|
256 |
\anupam{For $\normal (\vec u), \safe (\vec x)$ in antecedent, we always consider as a set, so do not display explicitly contraction rules. } |
|
136 | 257 |
\paragraph*{Induction} |
137 | 258 |
Corresponds to safe recursion on notation. |
138 |
Suppose final step is: |
|
259 |
Suppose final step is (wlog):
|
|
139 | 260 |
\[ |
140 |
\vlinf{\pind}{}{\Gamma , \normal (t) , A(0) \seqar A(t) , \Delta}{ \left\{\Gamma , \normal (u) , A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
|
|
261 |
\vlinf{\pind}{}{ \normal (\vec u), \safe (\vec x) , \Gamma, A(0) \seqar A(t(\vec u ;)) , \Delta}{ \left\{\normal (u) , \normal (\vec u) , \safe (\vec x) , \Gamma, A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
|
|
141 | 262 |
\] |
263 |
\anupam{need to say in normal form part that can assume induction of this form} |
|
142 | 264 |
For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
143 | 265 |
|
144 | 266 |
Now, by the inductive hypothesis, we have functions $h_i$ such that: |
145 | 267 |
\[ |
146 |
\wit{u , \vec u ; \vec x}{LHS} (l , u , \vec u ; \vec x , w) =1
|
|
268 |
\Wit{u , \vec u ; \vec x}{\Gamma, A(0)} (l , u , \vec u ; \vec x , \vec w)
|
|
147 | 269 |
\quad \implies \quad |
148 |
\wit{u , \vec u ; \vec x}{RHS} (l , u , \vec u ; \vec x , h_i (u \mode l , \vec u \mode l ; \vec x \mode l) ) =1
|
|
270 |
\Wit{u , \vec u ; \vec x}{A(\succ i u)} (l , u , \vec u ; \vec x , h_i ((u , \vec u) \mode l ; \vec x \mode l , \vec w) )
|
|
149 | 271 |
\] |
150 |
We define $ f$ as follows:
|
|
272 |
First let us define $ f$ as follows:
|
|
151 | 273 |
\[ |
152 | 274 |
\begin{array}{rcl} |
153 |
f (0 , \vec u ; \vec x, \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn & w^{A(0)} \\
|
|
154 |
f( \succ i u , \vec u ; \vec x , \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn &
|
|
155 |
h_i (u , \vec u ; \vec x , \vec w^\Gamma w^{\normal (?)}, f(u , \vec u ; \vec x , \vec w ))
|
|
275 |
f (0 , \vec u ; \vec x, \vec w, w ) & \dfn & w\\
|
|
276 |
f( \succ i u , \vec u ; \vec x , \vec w, w) & \dfn &
|
|
277 |
h_i (u , \vec u ; \vec x , \vec w , f(u , \vec u ; \vec x , \vec w , w ))
|
|
156 | 278 |
\end{array} |
157 | 279 |
\] |
158 |
\anupam{Must check above, could be problems in recursive case.}
|
|
280 |
where $\vec w$ corresponds to $\Gamma $ and $w$ corresponds to $A(0)$.
|
|
159 | 281 |
\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
282 |
|
|
283 |
Now we let $f^\pi (\vec u ; \vec x , \vec w) \dfn f(t(\vec u ; ) , \vec u ; \vec x , \vec w)$. |
|
284 |
|
|
285 |
\paragraph*{Cut} |
|
286 |
If it is a cut on an induction formula, which is safe, then it just corresponds to a safe composition since everything is substituted into a safe position. |
|
287 |
Otherwise it is a `raisecut': |
|
288 |
\[ |
|
289 |
\vliinf{\rais\cut}{}{\normal (\vec u ) , \normal (\vec v) , \safe (\vec x) ,\Gamma \seqar \Delta }{ \normal (\vec u) \seqar \exists x^\safe . A(x) }{ \normal (u) , \normal (\vec v) , \safe (\vec x) , A(u), \Gamma \seqar \Delta } |
|
290 |
\] |
|
291 |
In this case we have functions $f(\vec u ; )$ and $\vec g (u, \vec v ; \vec x , w , \vec w )$, in which case we construct $\vec f^\pi$ as: |
|
292 |
\[ |
|
293 |
\vec f^\pi ( \vec u , \vec v ; \vec x , \vec w ) |
|
294 |
\quad \dfn \quad |
|
295 |
\vec g ( \beta (1 ; f(\vec u ;) ) , \vec v ; \vec x , \beta(0;f(\vec u ;)) , \vec w ) |
|
296 |
\] |
|
160 | 297 |
\end{proof} |
161 | 298 |
|
162 | 299 |
We are now ready to prove the soundness theorem. |
Formats disponibles : Unified diff