Révision 219 CSL17/sequence-coding.tex
sequence-coding.tex (revision 219) | ||
---|---|---|
63 | 63 |
\end{lemma} |
64 | 64 |
\begin{proof} |
65 | 65 |
Length induction on $l$. |
66 |
\end{proof} |
|
66 |
\end{proof} |
|
67 |
|
|
68 |
|
|
69 |
\subsection{Summary} |
|
70 |
Assume the existence of a simple pairing function for elements of fixed size: $\pair{k,l}{x}{y}$ denotes the pair $(x \mode k , y \mode l )$. |
|
71 |
An appropriate such function would `interleave' $x$ and $y$, adding delimiters as necessary. |
|
72 |
We assume that $|\pair{k,l}{x}{y}| = k+O(l)$ and $\pair{k,l}{x}{y}$ satisfies the polychecking lemma. |
|
73 |
|
|
74 |
We will simply write $\pair{l}{x}{y}$ for $\pair{l,l}{x}{y}$. |
|
75 |
|
|
76 |
\begin{lemma} |
|
77 |
[Creating sequences] |
|
78 |
\label{lem:sequence-creation} |
|
79 |
Given a function $f(u , \vec u ; \vec x)$ there is a $\bc(f)$ function $F(l, u , \vec u ; \vec x)$ such that: |
|
80 |
\[ |
|
81 |
F(l,u,\vec u ; \vec x) |
|
82 |
\quad = \quad |
|
83 |
\langle f(0, \vec u ; \vec x) \mode l , f(1, \vec u ; \vec x) \mode l , \dots , f(|u|, \vec u ; \vec x) \mode l \rangle |
|
84 |
\] |
|
85 |
\end{lemma} |
|
86 |
\begin{proof} |
|
87 |
We simply define $F$ by safe recursion from $f$: |
|
88 |
\[ |
|
89 |
\begin{array}{rcl} |
|
90 |
F(l,0, \vec u ; \vec x) & \dfn & \langle ; f(0) \mode l \rangle \\ |
|
91 |
F(l, \succ i u , \vec u ; \vec x ) & \dfn & \pair{O(|u| l) , l}{F(l, u , \vec u ; \vec x)}{f( |\succ i u| , \vec u ; \vec x )} |
|
92 |
\end{array} |
|
93 |
\] |
|
94 |
where the constants for $O(|u|l)$ are sufficiently large. |
|
95 |
\end{proof} |
|
96 |
|
|
97 |
\begin{lemma} |
|
98 |
[Decoding sequences] |
|
99 |
We can define $\beta(l,i;x)$ as $(i\text{th element of x}) \mode l$. |
|
100 |
\end{lemma} |
|
101 |
\begin{proof} |
|
102 |
First define $\beta (j,i;x)$ as $j$th bit of $i$th element of $x$, then use similar idea to above, by a recursion on $j$. |
|
103 |
\end{proof} |
|
104 |
|
|
105 |
Notice that $\beta (l,i;x)$ satisfies the polychecking lemma. |
|
106 |
|
|
107 |
We define |
Formats disponibles : Unified diff