Révision 219 CSL17/preliminaries.tex
preliminaries.tex (revision 219) | ||
---|---|---|
1 | 1 |
|
2 | 2 |
\section{Preliminaries} |
3 |
\label{sect:prelims} |
|
3 | 4 |
We introduce the polynomial hierarchy and its basic properties, then the Bellantoni characterisation. |
4 | 5 |
|
5 | 6 |
\anupam{Should recall polymax bounded functions and the polychecking lemma, e.g.\ from Bellantoni's FPH paper or thesis. Quite important, even if proof not given.} |
... | ... | |
208 | 209 |
\end{definition} |
209 | 210 |
One then has: |
210 | 211 |
\begin{lemma}[Bounded Minimization, \cite{BellantoniThesis}] |
212 |
\label{lem:bounded-minimisation} |
|
211 | 213 |
If $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have: |
212 | 214 |
$$ (\exists y. f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y. (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$ |
213 | 215 |
\end{lemma} |
214 | 216 |
Finally we can state an important lemma about $\mubc$: |
215 | 217 |
\begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}] |
218 |
\label{lem:polychecking} |
|
216 | 219 |
Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function polynomial checking function on $\vec u$. |
217 | 220 |
\end{lemma} |
218 | 221 |
The following property follows from \cite{BellantoniThesis, Bellantoni95}] |
Formats disponibles : Unified diff