Révision 219 CSL17/preliminaries.tex

preliminaries.tex (revision 219)
1 1

  
2 2
\section{Preliminaries}
3
\label{sect:prelims}
3 4
We introduce the polynomial hierarchy and its basic properties, then the Bellantoni characterisation.
4 5

  
5 6
\anupam{Should recall polymax bounded functions and the polychecking lemma, e.g.\ from Bellantoni's FPH paper or thesis. Quite important, even if proof not given.}
......
208 209
 \end{definition}
209 210
 One then has:
210 211
 \begin{lemma}[Bounded Minimization, \cite{BellantoniThesis}]
212
 	\label{lem:bounded-minimisation}
211 213
If  $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have:
212 214
$$ (\exists y.   f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y.  (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$
213 215
 \end{lemma}
214 216
 Finally we can state an important lemma about $\mubc$:
215 217
 \begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}]
218
 	\label{lem:polychecking}
216 219
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function  polynomial checking function on $\vec u$.
217 220
 \end{lemma}
218 221
 The following property follows from \cite{BellantoniThesis, Bellantoni95}]

Formats disponibles : Unified diff