Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 219

Historique | Voir | Annoter | Télécharger (21,65 ko)

1 206 pbaillot
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2 182 pbaillot
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 183 pbaillot
Our base language is defined by the set of functions (and constants) symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and the set of predicate symbols
4 218 pbaillot
 $\{\leq, \safe, \normal \}$. The intended meaning of $|x|$ is the length of $x$ seen as a binary string, and that of $\smash(x,y)$ is $2^{|x||y|}$, so a string of length $|x||y|+1$.
5 218 pbaillot
6 182 pbaillot
We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
7 182 pbaillot
We will also use as shorthand notations:
8 182 pbaillot
$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
9 182 pbaillot
We call \textit{atomic formulas} formulas of the form $(s\leq t)$ or $(s=t)$.
10 182 pbaillot
 As we are in classical logic, we will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of subformula of the form $\neg \neg A$.
11 156 adas
12 183 pbaillot
In the sequel $\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
13 182 pbaillot
Now, let us describe the axioms we are considering.The $\basic$ axioms are as follows:
14 171 adas
\[
15 171 adas
\begin{array}{l}
16 171 adas
\safe (0) \\
17 172 adas
\forall x^\safe . \safe (\succ{} x) \\
18 172 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
19 172 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
20 176 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
21 176 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
22 176 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
23 179 pbaillot
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
24 183 pbaillot
\forall u^\normal \safe(u) \\
25 213 pbaillot
\forall u^\safe \safe(\hlf{u})\\
26 183 pbaillot
\forall x^\safe \safe(|x|)
27 171 adas
\end{array}
28 171 adas
\]
29 213 pbaillot
%\patrick{did I type writly the 2 last axioms?}
30 183 pbaillot
31 183 pbaillot
and the list of axioms of Appendix \ref{appendix:arithmetic}, coming from \cite{Buss86book}.
32 183 pbaillot
33 172 adas
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
34 168 adas
35 172 adas
36 179 pbaillot
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
37 179 pbaillot
38 172 adas
\begin{definition}
39 172 adas
[Derived functions and notations]
40 172 adas
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
41 172 adas
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
42 176 adas
43 176 adas
Need $bit$, $\beta$ , $\pair{}{}{}$.
44 172 adas
\end{definition}
45 172 adas
46 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
47 157 adas
48 157 adas
Use base theory + sharply bounded quantifiers.
49 157 adas
50 157 adas
51 157 adas
\begin{definition}
52 157 adas
[Quantifier hierarchy]
53 176 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
54 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
55 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
56 157 adas
\end{definition}
57 157 adas
58 168 adas
59 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
60 177 pbaillot
\begin{definition}\label{def:polynomialinduction}
61 177 pbaillot
[Polynomial induction]
62 177 pbaillot
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
63 177 pbaillot
\[
64 177 pbaillot
A(0)
65 177 pbaillot
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
66 177 pbaillot
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
67 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
68 177 pbaillot
\]
69 177 pbaillot
for each formula $A(x)$.
70 168 adas
71 177 pbaillot
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
72 168 adas
73 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
74 177 pbaillot
\end{definition}
75 177 pbaillot
76 177 pbaillot
77 178 pbaillot
\begin{definition}\label{def:ariththeory}
78 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
79 166 adas
\begin{itemize}
80 166 adas
	\item $\basic$;
81 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
82 166 adas
\end{itemize}
83 180 pbaillot
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
84 168 adas
\[
85 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
86 168 adas
\]
87 157 adas
\end{definition}
88 182 pbaillot
\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
89 182 pbaillot
90 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
91 157 adas
92 194 adas
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
93 194 adas
\begin{proposition}
94 194 adas
	[Length induction]
95 194 adas
	The axiom schema of formulae,
96 194 adas
\begin{equation}
97 194 adas
\label{eqn:lind}
98 194 adas
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
99 194 adas
\end{equation}
100 194 adas
	for formulae $A \in \Sigma^\safe_i$
101 194 adas
	is equivalent to $\cpind{\Sigma^\safe_i}$.
102 194 adas
\end{proposition}
103 194 adas
\begin{proof}
104 194 adas
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
105 194 adas
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
106 194 adas
\end{proof}
107 194 adas
108 194 adas
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
109 194 adas
We will freely use this in place of polynomial induction whenever it is convenient.
110 194 adas
111 157 adas
\begin{lemma}
112 157 adas
[Sharply bounded lemma]
113 219 adas
\label{lem:sharply-bounded-recursion}
114 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
115 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
116 157 adas
\end{lemma}
117 157 adas
\begin{proof}
118 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
119 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
120 157 adas
	\[
121 157 adas
	\begin{array}{rcl}
122 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
123 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
124 157 adas
	\end{array}
125 157 adas
	\]
126 157 adas
\end{proof}
127 157 adas
128 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
129 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
130 168 adas
131 168 adas
132 199 pbaillot
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
133 214 pbaillot
%Todo: $+1$,
134 168 adas
135 214 pbaillot
We say that a function $f$ is represented by a formula $A_f$ if the arithmetic can prove (in the forthcoming proof system) a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the result of $f(\vec u; \vec x)$.
136 214 pbaillot
137 214 pbaillot
Let us give a few examples of formulas representing basic functions.
138 214 pbaillot
\begin{itemize}
139 215 pbaillot
\item Projection $\pi_k^{m,n}$: $\forall^{\normal} u_1, \dots, u_m,  \forall^{\safe} x_{m+1}, \dots, x_{m+n}, \exists^{\safe} y. y=x_k$.
140 215 pbaillot
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
141 215 pbaillot
\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
142 214 pbaillot
\item Conditional $C$:
143 214 pbaillot
$$\begin{array}{ll}
144 214 pbaillot
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
145 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
146 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
147 214 pbaillot
\end{array}
148 214 pbaillot
$$
149 216 pbaillot
\item Addition:
150 216 pbaillot
$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$.
151 217 pbaillot
\item Prefix:
152 217 pbaillot
153 217 pbaillot
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
154 217 pbaillot
  of length $k$ is $y$. It is defined as:
155 217 pbaillot
  $$\begin{array}{ll}
156 217 pbaillot
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
157 217 pbaillot
                                                                                                   & \cand \; |z|=l\\
158 217 pbaillot
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
159 217 pbaillot
                                                                                                   \end{array}
160 217 pbaillot
$$
161 217 pbaillot
\item The following predicates will also be needed in proofs:
162 217 pbaillot
163 217 pbaillot
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  can be
164 217 pbaillot
defined by:
165 217 pbaillot
$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
166 214 pbaillot
\end{itemize}
167 214 pbaillot
168 215 pbaillot
169 168 adas
\subsection{Encoding sequences in the arithmetic}
170 168 adas
\todo{}
171 168 adas
172 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
173 168 adas
174 168 adas
175 168 adas
\subsection{A sequent calculus presentation}
176 168 adas
177 174 pbaillot
\begin{figure}
178 174 pbaillot
\[
179 174 pbaillot
\small
180 174 pbaillot
\begin{array}{l}
181 174 pbaillot
\begin{array}{cccc}
182 174 pbaillot
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
183 174 pbaillot
%& \vlinf{\id}{}{p \seqar p}{}
184 174 pbaillot
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
185 174 pbaillot
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
186 180 pbaillot
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
187 174 pbaillot
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
188 174 pbaillot
&&
189 174 pbaillot
\\
190 174 pbaillot
\noalign{\bigskip}
191 174 pbaillot
%\noalign{\bigskip}
192 174 pbaillot
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
193 174 pbaillot
&
194 174 pbaillot
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
195 174 pbaillot
&
196 174 pbaillot
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
197 174 pbaillot
%\quad
198 174 pbaillot
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
199 174 pbaillot
&
200 174 pbaillot
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
201 174 pbaillot
%\quad
202 174 pbaillot
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
203 174 pbaillot
\\
204 174 pbaillot
\noalign{\bigskip}
205 179 pbaillot
206 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
207 174 pbaillot
&
208 174 pbaillot
209 179 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
210 174 pbaillot
&
211 179 pbaillot
&
212 179 pbaillot
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
213 179 pbaillot
%&
214 179 pbaillot
%
215 179 pbaillot
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
216 174 pbaillot
217 179 pbaillot
218 174 pbaillot
\\
219 174 pbaillot
220 174 pbaillot
\noalign{\bigskip}
221 174 pbaillot
%\text{Structural:} & & & \\
222 174 pbaillot
%\noalign{\bigskip}
223 174 pbaillot
224 180 pbaillot
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
225 180 pbaillot
%&
226 174 pbaillot
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
227 180 pbaillot
%&
228 180 pbaillot
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
229 174 pbaillot
&
230 180 pbaillot
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
231 174 pbaillot
&
232 180 pbaillot
&
233 174 pbaillot
\\
234 174 pbaillot
\noalign{\bigskip}
235 174 pbaillot
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
236 174 pbaillot
&
237 174 pbaillot
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
238 174 pbaillot
&
239 174 pbaillot
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
240 174 pbaillot
&
241 174 pbaillot
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
242 174 pbaillot
%\noalign{\bigskip}
243 174 pbaillot
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
244 174 pbaillot
\end{array}
245 174 pbaillot
\end{array}
246 174 pbaillot
\]
247 174 pbaillot
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
248 174 pbaillot
\end{figure}
249 174 pbaillot
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
250 174 pbaillot
251 174 pbaillot
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
252 174 pbaillot
 \[
253 174 pbaillot
 \begin{array}{cc}
254 174 pbaillot
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
255 174 pbaillot
\end{array}
256 174 pbaillot
\]
257 174 pbaillot
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
258 174 pbaillot
 \begin{enumerate}
259 174 pbaillot
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
260 174 pbaillot
$ \Gamma,  \Pi$ are called \textit{context formulas}.
261 174 pbaillot
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
262 174 pbaillot
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
263 174 pbaillot
   \end{enumerate}
264 174 pbaillot
265 174 pbaillot
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
266 174 pbaillot
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
267 174 pbaillot
268 177 pbaillot
%\begin{definition}
269 177 pbaillot
%[Polynomial induction]
270 177 pbaillot
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
271 177 pbaillot
%\[
272 177 pbaillot
%A(0)
273 177 pbaillot
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
274 177 pbaillot
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
275 177 pbaillot
%\cimp  \forall x^{\normal} . A(x)
276 177 pbaillot
%\]
277 177 pbaillot
%for each formula $A(x)$.
278 177 pbaillot
%
279 177 pbaillot
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
280 177 pbaillot
%
281 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
282 177 pbaillot
%\end{definition}
283 174 pbaillot
284 177 pbaillot
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
285 177 pbaillot
286 177 pbaillot
Actually  $\pind$ is equivalent to the following rule:
287 177 pbaillot
\begin{equation}
288 177 pbaillot
\label{eqn:ind-rule}
289 177 pbaillot
\small
290 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
291 177 pbaillot
\end{equation}
292 177 pbaillot
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
293 177 pbaillot
294 178 pbaillot
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
295 177 pbaillot
 \[
296 177 pbaillot
 \begin{array}{cc}
297 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
298 177 pbaillot
\end{array}
299 177 pbaillot
\]
300 179 pbaillot
301 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
302 179 pbaillot
%\[
303 179 pbaillot
% \begin{array}{cc}
304 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
305 179 pbaillot
%\end{array}
306 179 pbaillot
%\]
307 179 pbaillot
%}
308 179 pbaillot
309 179 pbaillot
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$:
310 179 pbaillot
\[
311 179 pbaillot
\small
312 179 pbaillot
\begin{array}{l}
313 179 pbaillot
\begin{array}{cccc}
314 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
315 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
316 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
317 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
318 179 pbaillot
\end{array}
319 179 pbaillot
\\
320 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
321 179 pbaillot
\qquad
322 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
323 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
324 179 pbaillot
\qquad
325 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
326 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
327 179 pbaillot
\end{array}
328 179 pbaillot
\]
329 179 pbaillot
330 179 pbaillot
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
331 179 pbaillot
332 179 pbaillot
 \begin{lemma}
333 179 pbaillot
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable.
334 179 pbaillot
 \end{lemma}
335 179 pbaillot
336 168 adas
\subsection{Free-cut free normal form of proofs}
337 174 pbaillot
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
338 175 pbaillot
339 174 pbaillot
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
340 174 pbaillot
    \begin{definition}\label{def:anchoredcut}
341 174 pbaillot
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
342 174 pbaillot
  \begin{itemize}
343 174 pbaillot
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
344 174 pbaillot
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
345 174 pbaillot
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
346 174 pbaillot
  \end{itemize}
347 174 pbaillot
     A cut which is not anchored will also be called a \textit{free-cut}.
348 174 pbaillot
  \end{definition}
349 174 pbaillot
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
350 174 pbaillot
  \begin{itemize}
351 174 pbaillot
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
352 174 pbaillot
  \item The other premise is either of the same form or is a logical step with principal formula $A$.
353 174 pbaillot
  \end{itemize}
354 174 pbaillot
355 174 pbaillot
   Now we have (see \cite{Takeuti87}):
356 174 pbaillot
   \begin{theorem}
357 179 pbaillot
   [Free-cut elimination]\label{thm:freecutelimination}
358 174 pbaillot
   \label{thm:free-cut-elim}
359 174 pbaillot
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
360 175 pbaillot
   \end{theorem}
361 179 pbaillot
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
362 179 pbaillot
363 179 pbaillot
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
364 179 pbaillot
365 179 pbaillot
   \begin{lemma}\label{lem:welltyped}
366 181 pbaillot
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
367 181 pbaillot
 the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
368 179 pbaillot
   \end{lemma}
369 181 pbaillot
   \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
370 181 pbaillot
   \begin{proof}[Proof sketch]
371 181 pbaillot
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
372 181 pbaillot
373 181 pbaillot
   Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
374 181 pbaillot
   $\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
375 181 pbaillot
376 181 pbaillot
  Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
377 181 pbaillot
       \end{proof}
378 179 pbaillot
379 182 pbaillot
     \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
380 179 pbaillot
381 179 pbaillot
 \begin{theorem}
382 179 pbaillot
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent
383 179 pbaillot
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
384 179 pbaillot
   \begin{enumerate}
385 179 pbaillot
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
386 179 pbaillot
    \item $\pi$ is a well-typed and integer-positive proof.
387 179 pbaillot
   \end{enumerate}
388 179 pbaillot
   \end{theorem}