Statistiques
| Révision :

root / CSL17 / completeness.tex @ 217

Historique | Voir | Annoter | Télécharger (9,03 ko)

1
\section{Completeness}\label{sect:completeness}
2

    
3
The main result of this section is the following:
4

    
5
\begin{theorem}
6
	\label{thm:completeness}
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8
\end{theorem}
9

    
10
The rest of this section is devoted to a proof of this theorem.
11
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
12

    
13
 The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional, as already shown in Sect. \ref{sect:graphsbasicfunctions}. Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. 
14
\paragraph*{Predicative minimisation}
15
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. 
16
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
17
\[
18
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
19
\]
20
Let us define $A_f(\vec u ; \vec x , z)$ as:
21
\[
22
\begin{array}{rl}
23
&\left(
24
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
25
\right) \\
26
\cor & \left(
27
\begin{array}{ll}
28
z\neq 0 
29
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
30
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) 
31
\end{array}
32
\right)
33
\end{array}
34
\]
35
Notice that $A_f$ is $\Pi^{\safe}_{i-1}$, since $A_g$ is $\Sigma^{\safe}_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
36
In particular this means $A_f$ is $\Sigma^{\safe}_i$.
37

    
38
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
39

    
40
\begin{lemma}
41
[Minimisation]
42
$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.	
43
\end{lemma}
44
% see Thm 20 p. 58 in Buss' book.
45
%\begin{proof}
46
%\end{proof}
47
 This Lemma is proved by using the same method as for the proof of the analogous result in the bounded arithmetic $S_2^{i+1}$ (see \cite{Buss86book}, Thm 20, p. 58).
48

    
49
\patrick{Examining it superficially, I think indeed the proof of Buss can be adapted to our setting. But we should probably look again at that with more scrutiny.}
50

    
51
Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
52
\[
53
\exists !z^\safe  . A_f(\vec u ; \vec x , z)
54
\]
55
Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
56
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. 
57
%\todo{verify $z\neq 0$ disjunct.} 
58
Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
59
 $\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
60
  $\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce 
61
 $\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
62
 $A_f(\vec u ; \vec x , z)$ is proven.  
63

    
64
 Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.  
65

    
66
So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
67

    
68
\paragraph*{Predicative recursion on notation}
69

    
70
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
71
	\begin{itemize}
72
	%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
73
		\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
74
		\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
75
	\end{itemize}
76
	}
77
\patrick{I also assume access to the following predicates:
78
\begin{itemize}
79
%   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
80
%   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
81
   \item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
82
\end{itemize}}
83
In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}.
84

    
85
Suppose that $f$ is defined by predicative recursion on notation:
86
\[
87
\begin{array}{rcl}
88
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
89
f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
90
\end{array}
91
\]
92

    
93
\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
94

    
95
Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
96
We define $A_f (u ,\vec u ; \vec x , y)$ as,
97
\[
98
\exists w^\safe . \left(
99
\begin{array}{ll}
100
& 
101
%Seq(z) \cand 
102
\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
103
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
104
\cand & \forall^{\normal}  k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
105
\end{array}
106
\right)
107
\]
108
where 
109
\[
110
B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left(
111
\begin{array}{ll}
112
& \zerobit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\
113
\cand &  \onebit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) )
114
\end{array}
115
\right)
116
\]
117

    
118
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
119

    
120
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
121
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
122
\[
123
\exists y^\safe . A_f (u , \vec u ; \vec x , y) 
124
\quad \seqar \quad
125
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z)
126
\]
127

    
128
So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and 
129
 $A_f (u , \vec u ; \vec x , w) $.
130
 
131
 We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that
132
 $\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$
133
 
134
 So we have, for $k=|u|$:
135
 
136
 $$  \beta (k, w', y) \cand \beta (k+1 ,w', z)  \cand B (u , \vec u ; \vec x , y , z).$$
137
  
138
  and we can conclude that
139
   \[
140
\exists w'^\safe . \left(
141
\begin{array}{ll}
142
& 
143
%Seq(z) \cand 
144
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\
145
\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
146
\end{array}
147
\right)
148
\]
149
So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u,  
150
\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula. 
151

    
152
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
153

    
154
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
155

    
156
\paragraph*{Safe composition}
157
Now suppose that $f$ is defined by safe composition:
158
\[
159
f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
160
\]
161

    
162
By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
163
In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
164

    
165
We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
166
\[
167
\exists \vec v^\normal . \exists \vec y^\safe .  
168
\left(  
169
\bigwedge\limits_i A_{h_i} (\vec u , v_i)
170
\wedge
171
\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
172
\wedge
173
A_g ( \vec v , \vec y , z ) 
174
\right)
175
\]
176
The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
177

    
178
\todo{elaborate}
179

    
180
The proof of Thm \ref{thm:completeness} is thus completed.
181

    
182

    
183

    
184

    
185

    
186

    
187

    
188

    
189

    
190

    
191

    
192

    
193

    
194

    
195

    
196

    
197

    
198

    
199

    
200

    
201

    
202

    
203