Révision 217 CSL17/completeness.tex
completeness.tex (revision 217) | ||
---|---|---|
76 | 76 |
} |
77 | 77 |
\patrick{I also assume access to the following predicates: |
78 | 78 |
\begin{itemize} |
79 |
\item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)" |
|
80 |
\item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" |
|
79 |
% \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
|
|
80 |
% \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$"
|
|
81 | 81 |
\item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$. |
82 | 82 |
\end{itemize}} |
83 |
Now suppose that $f$ is defined by PRN: |
|
83 |
In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}. |
|
84 |
|
|
85 |
Suppose that $f$ is defined by predicative recursion on notation: |
|
84 | 86 |
\[ |
85 | 87 |
\begin{array}{rcl} |
86 | 88 |
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\ |
... | ... | |
97 | 99 |
\begin{array}{ll} |
98 | 100 |
& |
99 | 101 |
%Seq(z) \cand |
100 |
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\ |
|
102 |
\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
|
|
101 | 103 |
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\ |
102 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
|
|
104 |
\cand & \forall^{\normal} k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
|
|
103 | 105 |
\end{array} |
104 | 106 |
\right) |
105 | 107 |
\] |
Formats disponibles : Unified diff