Révision 217 CSL17/arithmetic.tex

arithmetic.tex (revision 217)
146 146
$$
147 147
\item Addition:
148 148
$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$. 
149
\item Prefix:
150

  
151
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
152
  of length $k$ is $y$. It is defined as:
153
  $$\begin{array}{ll}
154
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
155
                                                                                                   & \cand \; |z|=l\\
156
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
157
                                                                                                   \end{array}
158
$$
159
\item The following predicates will also be needed in proofs:
160

  
161
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  can be
162
defined by:
163
$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
149 164
\end{itemize}
150 165

  
151 166

  

Formats disponibles : Unified diff