Révision 217 CSL17/arithmetic.tex
arithmetic.tex (revision 217) | ||
---|---|---|
146 | 146 |
$$ |
147 | 147 |
\item Addition: |
148 | 148 |
$\forall^{\safe} x, y, \exists^{\safe} z. z=x+y$. |
149 |
\item Prefix: |
|
150 |
|
|
151 |
This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$ |
|
152 |
of length $k$ is $y$. It is defined as: |
|
153 |
$$\begin{array}{ll} |
|
154 |
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\ |
|
155 |
& \cand \; |z|=l\\ |
|
156 |
& \cand \; x=y\smsh(2,l)+z) |
|
157 |
\end{array} |
|
158 |
$$ |
|
159 |
\item The following predicates will also be needed in proofs: |
|
160 |
|
|
161 |
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$ can be |
|
162 |
defined by: |
|
163 |
$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$ |
|
149 | 164 |
\end{itemize} |
150 | 165 |
|
151 | 166 |
|
Formats disponibles : Unified diff