Révision 217

CSL17/arithmetic.tex (revision 217)
146 146
$$
147 147
\item Addition:
148 148
$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$. 
149
\item Prefix:
150

  
151
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
152
  of length $k$ is $y$. It is defined as:
153
  $$\begin{array}{ll}
154
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
155
                                                                                                   & \cand \; |z|=l\\
156
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
157
                                                                                                   \end{array}
158
$$
159
\item The following predicates will also be needed in proofs:
160

  
161
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  can be
162
defined by:
163
$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
149 164
\end{itemize}
150 165

  
151 166

  
CSL17/completeness.tex (revision 217)
76 76
	}
77 77
\patrick{I also assume access to the following predicates:
78 78
\begin{itemize}
79
   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
80
   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
79
%   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
80
%   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
81 81
   \item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
82 82
\end{itemize}}
83
Now suppose that $f$ is defined by PRN:
83
In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}.
84

  
85
Suppose that $f$ is defined by predicative recursion on notation:
84 86
\[
85 87
\begin{array}{rcl}
86 88
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
......
97 99
\begin{array}{ll}
98 100
& 
99 101
%Seq(z) \cand 
100
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
102
\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
101 103
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
102
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
104
\cand & \forall^{\normal}  k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
103 105
\end{array}
104 106
\right)
105 107
\]

Formats disponibles : Unified diff