76 |
76 |
}
|
77 |
77 |
\patrick{I also assume access to the following predicates:
|
78 |
78 |
\begin{itemize}
|
79 |
|
\item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
|
80 |
|
\item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$"
|
|
79 |
% \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
|
|
80 |
% \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$"
|
81 |
81 |
\item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
|
82 |
82 |
\end{itemize}}
|
83 |
|
Now suppose that $f$ is defined by PRN:
|
|
83 |
In the following we will use the predicates $\zerobit (u,k)$, $\onebit(u,k)$, $\pref(k,x,y)$ which have been defined in Sect. \ref{sect:graphsbasicfunctions}.
|
|
84 |
|
|
85 |
Suppose that $f$ is defined by predicative recursion on notation:
|
84 |
86 |
\[
|
85 |
87 |
\begin{array}{rcl}
|
86 |
88 |
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
|
... | ... | |
97 |
99 |
\begin{array}{ll}
|
98 |
100 |
&
|
99 |
101 |
%Seq(z) \cand
|
100 |
|
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
|
|
102 |
\exists^{\safe} y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
|
101 |
103 |
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
|
102 |
|
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
|
|
104 |
\cand & \forall^{\normal} k < |u| . \exists^{\safe} y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
|
103 |
105 |
\end{array}
|
104 |
106 |
\right)
|
105 |
107 |
\]
|