Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 217

Historique | Voir | Annoter | Télécharger (21,46 ko)

1 206 pbaillot
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2 182 pbaillot
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 183 pbaillot
Our base language is defined by the set of functions (and constants) symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and the set of predicate symbols
4 182 pbaillot
 $\{\leq, \safe, \normal \}$.
5 182 pbaillot
We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
6 182 pbaillot
We will also use as shorthand notations:
7 182 pbaillot
$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
8 182 pbaillot
We call \textit{atomic formulas} formulas of the form $(s\leq t)$ or $(s=t)$.
9 182 pbaillot
 As we are in classical logic, we will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of subformula of the form $\neg \neg A$.
10 156 adas
11 183 pbaillot
In the sequel $\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
12 182 pbaillot
Now, let us describe the axioms we are considering.The $\basic$ axioms are as follows:
13 171 adas
\[
14 171 adas
\begin{array}{l}
15 171 adas
\safe (0) \\
16 172 adas
\forall x^\safe . \safe (\succ{} x) \\
17 172 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
18 172 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
19 176 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
20 176 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
21 176 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
22 179 pbaillot
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
23 183 pbaillot
\forall u^\normal \safe(u) \\
24 213 pbaillot
\forall u^\safe \safe(\hlf{u})\\
25 183 pbaillot
\forall x^\safe \safe(|x|)
26 171 adas
\end{array}
27 171 adas
\]
28 213 pbaillot
%\patrick{did I type writly the 2 last axioms?}
29 183 pbaillot
30 183 pbaillot
and the list of axioms of Appendix \ref{appendix:arithmetic}, coming from \cite{Buss86book}.
31 183 pbaillot
32 172 adas
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
33 168 adas
34 172 adas
35 179 pbaillot
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
36 179 pbaillot
37 172 adas
\begin{definition}
38 172 adas
[Derived functions and notations]
39 172 adas
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
40 172 adas
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
41 176 adas
42 176 adas
Need $bit$, $\beta$ , $\pair{}{}{}$.
43 172 adas
\end{definition}
44 172 adas
45 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
46 157 adas
47 157 adas
Use base theory + sharply bounded quantifiers.
48 157 adas
49 157 adas
50 157 adas
\begin{definition}
51 157 adas
[Quantifier hierarchy]
52 176 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
53 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
54 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
55 157 adas
\end{definition}
56 157 adas
57 168 adas
58 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
59 177 pbaillot
\begin{definition}\label{def:polynomialinduction}
60 177 pbaillot
[Polynomial induction]
61 177 pbaillot
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
62 177 pbaillot
\[
63 177 pbaillot
A(0)
64 177 pbaillot
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
65 177 pbaillot
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
66 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
67 177 pbaillot
\]
68 177 pbaillot
for each formula $A(x)$.
69 168 adas
70 177 pbaillot
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
71 168 adas
72 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
73 177 pbaillot
\end{definition}
74 177 pbaillot
75 177 pbaillot
76 178 pbaillot
\begin{definition}\label{def:ariththeory}
77 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
78 166 adas
\begin{itemize}
79 166 adas
	\item $\basic$;
80 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
81 166 adas
\end{itemize}
82 180 pbaillot
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
83 168 adas
\[
84 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
85 168 adas
\]
86 157 adas
\end{definition}
87 182 pbaillot
\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
88 182 pbaillot
89 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
90 157 adas
91 194 adas
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
92 194 adas
\begin{proposition}
93 194 adas
	[Length induction]
94 194 adas
	The axiom schema of formulae,
95 194 adas
\begin{equation}
96 194 adas
\label{eqn:lind}
97 194 adas
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
98 194 adas
\end{equation}
99 194 adas
	for formulae $A \in \Sigma^\safe_i$
100 194 adas
	is equivalent to $\cpind{\Sigma^\safe_i}$.
101 194 adas
\end{proposition}
102 194 adas
\begin{proof}
103 194 adas
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
104 194 adas
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
105 194 adas
\end{proof}
106 194 adas
107 194 adas
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
108 194 adas
We will freely use this in place of polynomial induction whenever it is convenient.
109 194 adas
110 157 adas
\begin{lemma}
111 157 adas
[Sharply bounded lemma]
112 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
113 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
114 157 adas
\end{lemma}
115 157 adas
\begin{proof}
116 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
117 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
118 157 adas
	\[
119 157 adas
	\begin{array}{rcl}
120 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
121 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
122 157 adas
	\end{array}
123 157 adas
	\]
124 157 adas
\end{proof}
125 157 adas
126 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
127 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
128 168 adas
129 168 adas
130 199 pbaillot
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
131 214 pbaillot
%Todo: $+1$,
132 168 adas
133 214 pbaillot
We say that a function $f$ is represented by a formula $A_f$ if the arithmetic can prove (in the forthcoming proof system) a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the result of $f(\vec u; \vec x)$.
134 214 pbaillot
135 214 pbaillot
Let us give a few examples of formulas representing basic functions.
136 214 pbaillot
\begin{itemize}
137 215 pbaillot
\item Projection $\pi_k^{m,n}$: $\forall^{\normal} u_1, \dots, u_m,  \forall^{\safe} x_{m+1}, \dots, x_{m+n}, \exists^{\safe} y. y=x_k$.
138 215 pbaillot
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
139 215 pbaillot
\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
140 214 pbaillot
\item Conditional $C$:
141 214 pbaillot
$$\begin{array}{ll}
142 214 pbaillot
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
143 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
144 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
145 214 pbaillot
\end{array}
146 214 pbaillot
$$
147 216 pbaillot
\item Addition:
148 216 pbaillot
$\forall^{\safe} x, y,  \exists^{\safe} z. z=x+y$.
149 217 pbaillot
\item Prefix:
150 217 pbaillot
151 217 pbaillot
  This is a predicate that we will need for technical reasons, in the completeness proof. The predicate $\pref(k,x,y)$ holds if the prefix of string $x$
152 217 pbaillot
  of length $k$ is $y$. It is defined as:
153 217 pbaillot
  $$\begin{array}{ll}
154 217 pbaillot
\exists^{\safe} z, \exists^{\normal} l\leq |x|. & (k+l= |x|\\
155 217 pbaillot
                                                                                                   & \cand \; |z|=l\\
156 217 pbaillot
                                                                                                   & \cand \; x=y\smsh(2,l)+z)
157 217 pbaillot
                                                                                                   \end{array}
158 217 pbaillot
$$
159 217 pbaillot
\item The following predicates will also be needed in proofs:
160 217 pbaillot
161 217 pbaillot
$\zerobit(x,k)$ (resp. $\onebit(x,k)$) holds iff the $k$th bit of $x$ is 0 (resp. 1). The predicate $\zerobit(x,k)$  can be
162 217 pbaillot
defined by:
163 217 pbaillot
$$ \exists^{\safe} y.(\pref(k,x,y) \cand C(y,0,1,0)).$$
164 214 pbaillot
\end{itemize}
165 214 pbaillot
166 215 pbaillot
167 168 adas
\subsection{Encoding sequences in the arithmetic}
168 168 adas
\todo{}
169 168 adas
170 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
171 168 adas
172 168 adas
173 168 adas
\subsection{A sequent calculus presentation}
174 168 adas
175 174 pbaillot
\begin{figure}
176 174 pbaillot
\[
177 174 pbaillot
\small
178 174 pbaillot
\begin{array}{l}
179 174 pbaillot
\begin{array}{cccc}
180 174 pbaillot
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
181 174 pbaillot
%& \vlinf{\id}{}{p \seqar p}{}
182 174 pbaillot
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
183 174 pbaillot
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
184 180 pbaillot
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
185 174 pbaillot
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
186 174 pbaillot
&&
187 174 pbaillot
\\
188 174 pbaillot
\noalign{\bigskip}
189 174 pbaillot
%\noalign{\bigskip}
190 174 pbaillot
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
191 174 pbaillot
&
192 174 pbaillot
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
193 174 pbaillot
&
194 174 pbaillot
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
195 174 pbaillot
%\quad
196 174 pbaillot
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
197 174 pbaillot
&
198 174 pbaillot
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
199 174 pbaillot
%\quad
200 174 pbaillot
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
201 174 pbaillot
\\
202 174 pbaillot
\noalign{\bigskip}
203 179 pbaillot
204 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
205 174 pbaillot
&
206 174 pbaillot
207 179 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
208 174 pbaillot
&
209 179 pbaillot
&
210 179 pbaillot
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
211 179 pbaillot
%&
212 179 pbaillot
%
213 179 pbaillot
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
214 174 pbaillot
215 179 pbaillot
216 174 pbaillot
\\
217 174 pbaillot
218 174 pbaillot
\noalign{\bigskip}
219 174 pbaillot
%\text{Structural:} & & & \\
220 174 pbaillot
%\noalign{\bigskip}
221 174 pbaillot
222 180 pbaillot
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
223 180 pbaillot
%&
224 174 pbaillot
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
225 180 pbaillot
%&
226 180 pbaillot
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
227 174 pbaillot
&
228 180 pbaillot
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
229 174 pbaillot
&
230 180 pbaillot
&
231 174 pbaillot
\\
232 174 pbaillot
\noalign{\bigskip}
233 174 pbaillot
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
234 174 pbaillot
&
235 174 pbaillot
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
236 174 pbaillot
&
237 174 pbaillot
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
238 174 pbaillot
&
239 174 pbaillot
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
240 174 pbaillot
%\noalign{\bigskip}
241 174 pbaillot
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
242 174 pbaillot
\end{array}
243 174 pbaillot
\end{array}
244 174 pbaillot
\]
245 174 pbaillot
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
246 174 pbaillot
\end{figure}
247 174 pbaillot
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
248 174 pbaillot
249 174 pbaillot
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
250 174 pbaillot
 \[
251 174 pbaillot
 \begin{array}{cc}
252 174 pbaillot
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
253 174 pbaillot
\end{array}
254 174 pbaillot
\]
255 174 pbaillot
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
256 174 pbaillot
 \begin{enumerate}
257 174 pbaillot
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
258 174 pbaillot
$ \Gamma,  \Pi$ are called \textit{context formulas}.
259 174 pbaillot
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
260 174 pbaillot
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
261 174 pbaillot
   \end{enumerate}
262 174 pbaillot
263 174 pbaillot
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
264 174 pbaillot
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
265 174 pbaillot
266 177 pbaillot
%\begin{definition}
267 177 pbaillot
%[Polynomial induction]
268 177 pbaillot
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
269 177 pbaillot
%\[
270 177 pbaillot
%A(0)
271 177 pbaillot
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
272 177 pbaillot
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
273 177 pbaillot
%\cimp  \forall x^{\normal} . A(x)
274 177 pbaillot
%\]
275 177 pbaillot
%for each formula $A(x)$.
276 177 pbaillot
%
277 177 pbaillot
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
278 177 pbaillot
%
279 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
280 177 pbaillot
%\end{definition}
281 174 pbaillot
282 177 pbaillot
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
283 177 pbaillot
284 177 pbaillot
Actually  $\pind$ is equivalent to the following rule:
285 177 pbaillot
\begin{equation}
286 177 pbaillot
\label{eqn:ind-rule}
287 177 pbaillot
\small
288 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
289 177 pbaillot
\end{equation}
290 177 pbaillot
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
291 177 pbaillot
292 178 pbaillot
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
293 177 pbaillot
 \[
294 177 pbaillot
 \begin{array}{cc}
295 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
296 177 pbaillot
\end{array}
297 177 pbaillot
\]
298 179 pbaillot
299 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
300 179 pbaillot
%\[
301 179 pbaillot
% \begin{array}{cc}
302 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
303 179 pbaillot
%\end{array}
304 179 pbaillot
%\]
305 179 pbaillot
%}
306 179 pbaillot
307 179 pbaillot
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$:
308 179 pbaillot
\[
309 179 pbaillot
\small
310 179 pbaillot
\begin{array}{l}
311 179 pbaillot
\begin{array}{cccc}
312 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
313 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
314 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
315 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
316 179 pbaillot
\end{array}
317 179 pbaillot
\\
318 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
319 179 pbaillot
\qquad
320 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
321 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
322 179 pbaillot
\qquad
323 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
324 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
325 179 pbaillot
\end{array}
326 179 pbaillot
\]
327 179 pbaillot
328 179 pbaillot
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
329 179 pbaillot
330 179 pbaillot
 \begin{lemma}
331 179 pbaillot
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable.
332 179 pbaillot
 \end{lemma}
333 179 pbaillot
334 168 adas
\subsection{Free-cut free normal form of proofs}
335 174 pbaillot
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
336 175 pbaillot
337 174 pbaillot
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
338 174 pbaillot
    \begin{definition}\label{def:anchoredcut}
339 174 pbaillot
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
340 174 pbaillot
  \begin{itemize}
341 174 pbaillot
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
342 174 pbaillot
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
343 174 pbaillot
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
344 174 pbaillot
  \end{itemize}
345 174 pbaillot
     A cut which is not anchored will also be called a \textit{free-cut}.
346 174 pbaillot
  \end{definition}
347 174 pbaillot
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
348 174 pbaillot
  \begin{itemize}
349 174 pbaillot
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
350 174 pbaillot
  \item The other premise is either of the same form or is a logical step with principal formula $A$.
351 174 pbaillot
  \end{itemize}
352 174 pbaillot
353 174 pbaillot
   Now we have (see \cite{Takeuti87}):
354 174 pbaillot
   \begin{theorem}
355 179 pbaillot
   [Free-cut elimination]\label{thm:freecutelimination}
356 174 pbaillot
   \label{thm:free-cut-elim}
357 174 pbaillot
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
358 175 pbaillot
   \end{theorem}
359 179 pbaillot
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
360 179 pbaillot
361 179 pbaillot
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
362 179 pbaillot
363 179 pbaillot
   \begin{lemma}\label{lem:welltyped}
364 181 pbaillot
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
365 181 pbaillot
 the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
366 179 pbaillot
   \end{lemma}
367 181 pbaillot
   \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
368 181 pbaillot
   \begin{proof}[Proof sketch]
369 181 pbaillot
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
370 181 pbaillot
371 181 pbaillot
   Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
372 181 pbaillot
   $\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
373 181 pbaillot
374 181 pbaillot
  Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
375 181 pbaillot
       \end{proof}
376 179 pbaillot
377 182 pbaillot
     \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
378 179 pbaillot
379 179 pbaillot
 \begin{theorem}
380 179 pbaillot
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent
381 179 pbaillot
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
382 179 pbaillot
   \begin{enumerate}
383 179 pbaillot
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
384 179 pbaillot
    \item $\pi$ is a well-typed and integer-positive proof.
385 179 pbaillot
   \end{enumerate}
386 179 pbaillot
   \end{theorem}