Révision 215 CSL17/arithmetic.tex
arithmetic.tex (revision 215) | ||
---|---|---|
134 | 134 |
|
135 | 135 |
Let us give a few examples of formulas representing basic functions. |
136 | 136 |
\begin{itemize} |
137 |
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$ |
|
137 |
\item Projection $\pi_k^{m,n}$: $\forall^{\normal} u_1, \dots, u_m, \forall^{\safe} x_{m+1}, \dots, x_{m+n}, \exists^{\safe} y. y=x_k$. |
|
138 |
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way. |
|
139 |
\item Predecessor $p$: $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$ |
|
138 | 140 |
\item Conditional $C$: |
139 | 141 |
$$\begin{array}{ll} |
140 | 142 |
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\ |
... | ... | |
143 | 145 |
\end{array} |
144 | 146 |
$$ |
145 | 147 |
\end{itemize} |
146 |
\patrick{to be continued} |
|
147 | 148 |
|
149 |
|
|
148 | 150 |
\subsection{Encoding sequences in the arithmetic} |
149 | 151 |
\todo{} |
150 | 152 |
|
Formats disponibles : Unified diff