Révision 215

CSL17/arithmetic.tex (revision 215)
134 134
 
135 135
Let us give a few examples of formulas representing basic functions.
136 136
\begin{itemize}
137
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$ 
137
\item Projection $\pi_k^{m,n}$: $\forall^{\normal} u_1, \dots, u_m,  \forall^{\safe} x_{m+1}, \dots, x_{m+n}, \exists^{\safe} y. y=x_k$.
138
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$. The formulas for the binary successors $\succ{0}$, $\succ{1}$ and the constant functions $\epsilon^k$ are defined in a similar way.
139
\item Predecessor $p$:   $\forall^{\safe} x, \exists^{\safe} y. (x=\succ{0} y \cor x=\succ{1} y \cor (x=\epsilon \cand y= \epsilon)) .$
138 140
\item Conditional $C$: 
139 141
$$\begin{array}{ll}
140 142
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
......
143 145
\end{array}
144 146
$$
145 147
\end{itemize}
146
\patrick{to be continued}
147 148

  
149

  
148 150
\subsection{Encoding sequences in the arithmetic}
149 151
\todo{}
150 152

  

Formats disponibles : Unified diff