Révision 214 CSL17/arithmetic.tex

arithmetic.tex (revision 214)
128 128

  
129 129

  
130 130
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
131
Todo: $+1$,  
131
%Todo: $+1$,  
132 132

  
133
We say that a function $f$ is represented by a formula $A_f$ if the arithmetic can prove (in the forthcoming proof system) a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the result of $f(\vec u; \vec x)$.
134
 
135
Let us give a few examples of formulas representing basic functions.
136
\begin{itemize}
137
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$ 
138
\item Conditional $C$: 
139
$$\begin{array}{ll}
140
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
141
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
142
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
143
\end{array}
144
$$
145
\end{itemize}
146
\patrick{to be continued}
147

  
133 148
\subsection{Encoding sequences in the arithmetic}
134 149
\todo{}
135 150

  

Formats disponibles : Unified diff