Révision 214
CSL17/arithmetic.tex (revision 214) | ||
---|---|---|
128 | 128 |
|
129 | 129 |
|
130 | 130 |
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions} |
131 |
Todo: $+1$, |
|
131 |
%Todo: $+1$,
|
|
132 | 132 |
|
133 |
We say that a function $f$ is represented by a formula $A_f$ if the arithmetic can prove (in the forthcoming proof system) a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the result of $f(\vec u; \vec x)$. |
|
134 |
|
|
135 |
Let us give a few examples of formulas representing basic functions. |
|
136 |
\begin{itemize} |
|
137 |
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$ |
|
138 |
\item Conditional $C$: |
|
139 |
$$\begin{array}{ll} |
|
140 |
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\ |
|
141 |
& \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\ |
|
142 |
& \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\ |
|
143 |
\end{array} |
|
144 |
$$ |
|
145 |
\end{itemize} |
|
146 |
\patrick{to be continued} |
|
147 |
|
|
133 | 148 |
\subsection{Encoding sequences in the arithmetic} |
134 | 149 |
\todo{} |
135 | 150 |
|
Formats disponibles : Unified diff