Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 214

Historique | Voir | Annoter | Télécharger (20,14 ko)

1 206 pbaillot
\section{An arithmetic for the polynomial hierarchy}\label{sect:arithmetic}
2 182 pbaillot
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 183 pbaillot
Our base language is defined by the set of functions (and constants) symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and the set of predicate symbols
4 182 pbaillot
 $\{\leq, \safe, \normal \}$.
5 182 pbaillot
We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
6 182 pbaillot
We will also use as shorthand notations:
7 182 pbaillot
$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
8 182 pbaillot
We call \textit{atomic formulas} formulas of the form $(s\leq t)$ or $(s=t)$.
9 182 pbaillot
 As we are in classical logic, we will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of subformula of the form $\neg \neg A$.
10 156 adas
11 183 pbaillot
In the sequel $\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
12 182 pbaillot
Now, let us describe the axioms we are considering.The $\basic$ axioms are as follows:
13 171 adas
\[
14 171 adas
\begin{array}{l}
15 171 adas
\safe (0) \\
16 172 adas
\forall x^\safe . \safe (\succ{} x) \\
17 172 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
18 172 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
19 176 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
20 176 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
21 176 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
22 179 pbaillot
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
23 183 pbaillot
\forall u^\normal \safe(u) \\
24 213 pbaillot
\forall u^\safe \safe(\hlf{u})\\
25 183 pbaillot
\forall x^\safe \safe(|x|)
26 171 adas
\end{array}
27 171 adas
\]
28 213 pbaillot
%\patrick{did I type writly the 2 last axioms?}
29 183 pbaillot
30 183 pbaillot
and the list of axioms of Appendix \ref{appendix:arithmetic}, coming from \cite{Buss86book}.
31 183 pbaillot
32 172 adas
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
33 168 adas
34 172 adas
35 179 pbaillot
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
36 179 pbaillot
37 172 adas
\begin{definition}
38 172 adas
[Derived functions and notations]
39 172 adas
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
40 172 adas
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
41 176 adas
42 176 adas
Need $bit$, $\beta$ , $\pair{}{}{}$.
43 172 adas
\end{definition}
44 172 adas
45 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
46 157 adas
47 157 adas
Use base theory + sharply bounded quantifiers.
48 157 adas
49 157 adas
50 157 adas
\begin{definition}
51 157 adas
[Quantifier hierarchy]
52 176 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
53 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
54 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
55 157 adas
\end{definition}
56 157 adas
57 168 adas
58 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
59 177 pbaillot
\begin{definition}\label{def:polynomialinduction}
60 177 pbaillot
[Polynomial induction]
61 177 pbaillot
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
62 177 pbaillot
\[
63 177 pbaillot
A(0)
64 177 pbaillot
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
65 177 pbaillot
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
66 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
67 177 pbaillot
\]
68 177 pbaillot
for each formula $A(x)$.
69 168 adas
70 177 pbaillot
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
71 168 adas
72 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
73 177 pbaillot
\end{definition}
74 177 pbaillot
75 177 pbaillot
76 178 pbaillot
\begin{definition}\label{def:ariththeory}
77 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
78 166 adas
\begin{itemize}
79 166 adas
	\item $\basic$;
80 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
81 166 adas
\end{itemize}
82 180 pbaillot
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
83 168 adas
\[
84 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
85 168 adas
\]
86 157 adas
\end{definition}
87 182 pbaillot
\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
88 182 pbaillot
89 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
90 157 adas
91 194 adas
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
92 194 adas
\begin{proposition}
93 194 adas
	[Length induction]
94 194 adas
	The axiom schema of formulae,
95 194 adas
\begin{equation}
96 194 adas
\label{eqn:lind}
97 194 adas
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
98 194 adas
\end{equation}
99 194 adas
	for formulae $A \in \Sigma^\safe_i$
100 194 adas
	is equivalent to $\cpind{\Sigma^\safe_i}$.
101 194 adas
\end{proposition}
102 194 adas
\begin{proof}
103 194 adas
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
104 194 adas
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
105 194 adas
\end{proof}
106 194 adas
107 194 adas
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
108 194 adas
We will freely use this in place of polynomial induction whenever it is convenient.
109 194 adas
110 157 adas
\begin{lemma}
111 157 adas
[Sharply bounded lemma]
112 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
113 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
114 157 adas
\end{lemma}
115 157 adas
\begin{proof}
116 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
117 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
118 157 adas
	\[
119 157 adas
	\begin{array}{rcl}
120 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
121 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
122 157 adas
	\end{array}
123 157 adas
	\]
124 157 adas
\end{proof}
125 157 adas
126 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
127 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
128 168 adas
129 168 adas
130 199 pbaillot
\subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions}
131 214 pbaillot
%Todo: $+1$,
132 168 adas
133 214 pbaillot
We say that a function $f$ is represented by a formula $A_f$ if the arithmetic can prove (in the forthcoming proof system) a formula of the form $\forall ^{\normal} \vec u, \forall ^{\safe} x, \exists^{\safe}! y. A_f$. The variables $\vec u$ and $\vec x$ can respectively be thought of as normal and safe arguments of $f$, and $y$ is the result of $f(\vec u; \vec x)$.
134 214 pbaillot
135 214 pbaillot
Let us give a few examples of formulas representing basic functions.
136 214 pbaillot
\begin{itemize}
137 214 pbaillot
\item Successor $\succ{}$: $\forall^{\safe} x, \exists^{\safe} y. y=x+1.$
138 214 pbaillot
\item Conditional $C$:
139 214 pbaillot
$$\begin{array}{ll}
140 214 pbaillot
\forall^{\safe} x, y_{\epsilon}, y_0, y_1, \exists^{\safe} y. & ((x=\epsilon)\cand (y=y_{\epsilon})\\
141 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{0}z) \cand (y=y_0))\\
142 214 pbaillot
                                                                                                   & \cor( \exists^{\safe}z.(x=\succ{1}z) \cand (y=y_1)))\
143 214 pbaillot
\end{array}
144 214 pbaillot
$$
145 214 pbaillot
\end{itemize}
146 214 pbaillot
\patrick{to be continued}
147 214 pbaillot
148 168 adas
\subsection{Encoding sequences in the arithmetic}
149 168 adas
\todo{}
150 168 adas
151 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
152 168 adas
153 168 adas
154 168 adas
\subsection{A sequent calculus presentation}
155 168 adas
156 174 pbaillot
\begin{figure}
157 174 pbaillot
\[
158 174 pbaillot
\small
159 174 pbaillot
\begin{array}{l}
160 174 pbaillot
\begin{array}{cccc}
161 174 pbaillot
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
162 174 pbaillot
%& \vlinf{\id}{}{p \seqar p}{}
163 174 pbaillot
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
164 174 pbaillot
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
165 180 pbaillot
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
166 174 pbaillot
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
167 174 pbaillot
&&
168 174 pbaillot
\\
169 174 pbaillot
\noalign{\bigskip}
170 174 pbaillot
%\noalign{\bigskip}
171 174 pbaillot
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
172 174 pbaillot
&
173 174 pbaillot
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
174 174 pbaillot
&
175 174 pbaillot
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
176 174 pbaillot
%\quad
177 174 pbaillot
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
178 174 pbaillot
&
179 174 pbaillot
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
180 174 pbaillot
%\quad
181 174 pbaillot
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
182 174 pbaillot
\\
183 174 pbaillot
\noalign{\bigskip}
184 179 pbaillot
185 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
186 174 pbaillot
&
187 174 pbaillot
188 179 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
189 174 pbaillot
&
190 179 pbaillot
&
191 179 pbaillot
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
192 179 pbaillot
%&
193 179 pbaillot
%
194 179 pbaillot
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
195 174 pbaillot
196 179 pbaillot
197 174 pbaillot
\\
198 174 pbaillot
199 174 pbaillot
\noalign{\bigskip}
200 174 pbaillot
%\text{Structural:} & & & \\
201 174 pbaillot
%\noalign{\bigskip}
202 174 pbaillot
203 180 pbaillot
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
204 180 pbaillot
%&
205 174 pbaillot
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
206 180 pbaillot
%&
207 180 pbaillot
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
208 174 pbaillot
&
209 180 pbaillot
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
210 174 pbaillot
&
211 180 pbaillot
&
212 174 pbaillot
\\
213 174 pbaillot
\noalign{\bigskip}
214 174 pbaillot
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
215 174 pbaillot
&
216 174 pbaillot
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
217 174 pbaillot
&
218 174 pbaillot
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
219 174 pbaillot
&
220 174 pbaillot
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
221 174 pbaillot
%\noalign{\bigskip}
222 174 pbaillot
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
223 174 pbaillot
\end{array}
224 174 pbaillot
\end{array}
225 174 pbaillot
\]
226 174 pbaillot
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
227 174 pbaillot
\end{figure}
228 174 pbaillot
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
229 174 pbaillot
230 174 pbaillot
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
231 174 pbaillot
 \[
232 174 pbaillot
 \begin{array}{cc}
233 174 pbaillot
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
234 174 pbaillot
\end{array}
235 174 pbaillot
\]
236 174 pbaillot
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
237 174 pbaillot
 \begin{enumerate}
238 174 pbaillot
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
239 174 pbaillot
$ \Gamma,  \Pi$ are called \textit{context formulas}.
240 174 pbaillot
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
241 174 pbaillot
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
242 174 pbaillot
   \end{enumerate}
243 174 pbaillot
244 174 pbaillot
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
245 174 pbaillot
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
246 174 pbaillot
247 177 pbaillot
%\begin{definition}
248 177 pbaillot
%[Polynomial induction]
249 177 pbaillot
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
250 177 pbaillot
%\[
251 177 pbaillot
%A(0)
252 177 pbaillot
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
253 177 pbaillot
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
254 177 pbaillot
%\cimp  \forall x^{\normal} . A(x)
255 177 pbaillot
%\]
256 177 pbaillot
%for each formula $A(x)$.
257 177 pbaillot
%
258 177 pbaillot
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
259 177 pbaillot
%
260 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
261 177 pbaillot
%\end{definition}
262 174 pbaillot
263 177 pbaillot
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
264 177 pbaillot
265 177 pbaillot
Actually  $\pind$ is equivalent to the following rule:
266 177 pbaillot
\begin{equation}
267 177 pbaillot
\label{eqn:ind-rule}
268 177 pbaillot
\small
269 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
270 177 pbaillot
\end{equation}
271 177 pbaillot
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
272 177 pbaillot
273 178 pbaillot
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
274 177 pbaillot
 \[
275 177 pbaillot
 \begin{array}{cc}
276 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
277 177 pbaillot
\end{array}
278 177 pbaillot
\]
279 179 pbaillot
280 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
281 179 pbaillot
%\[
282 179 pbaillot
% \begin{array}{cc}
283 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
284 179 pbaillot
%\end{array}
285 179 pbaillot
%\]
286 179 pbaillot
%}
287 179 pbaillot
288 179 pbaillot
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$:
289 179 pbaillot
\[
290 179 pbaillot
\small
291 179 pbaillot
\begin{array}{l}
292 179 pbaillot
\begin{array}{cccc}
293 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
294 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
295 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
296 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
297 179 pbaillot
\end{array}
298 179 pbaillot
\\
299 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
300 179 pbaillot
\qquad
301 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
302 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
303 179 pbaillot
\qquad
304 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
305 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
306 179 pbaillot
\end{array}
307 179 pbaillot
\]
308 179 pbaillot
309 179 pbaillot
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
310 179 pbaillot
311 179 pbaillot
 \begin{lemma}
312 179 pbaillot
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable.
313 179 pbaillot
 \end{lemma}
314 179 pbaillot
315 168 adas
\subsection{Free-cut free normal form of proofs}
316 174 pbaillot
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
317 175 pbaillot
318 174 pbaillot
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
319 174 pbaillot
    \begin{definition}\label{def:anchoredcut}
320 174 pbaillot
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
321 174 pbaillot
  \begin{itemize}
322 174 pbaillot
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
323 174 pbaillot
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
324 174 pbaillot
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
325 174 pbaillot
  \end{itemize}
326 174 pbaillot
     A cut which is not anchored will also be called a \textit{free-cut}.
327 174 pbaillot
  \end{definition}
328 174 pbaillot
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
329 174 pbaillot
  \begin{itemize}
330 174 pbaillot
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
331 174 pbaillot
  \item The other premise is either of the same form or is a logical step with principal formula $A$.
332 174 pbaillot
  \end{itemize}
333 174 pbaillot
334 174 pbaillot
   Now we have (see \cite{Takeuti87}):
335 174 pbaillot
   \begin{theorem}
336 179 pbaillot
   [Free-cut elimination]\label{thm:freecutelimination}
337 174 pbaillot
   \label{thm:free-cut-elim}
338 174 pbaillot
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
339 175 pbaillot
   \end{theorem}
340 179 pbaillot
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
341 179 pbaillot
342 179 pbaillot
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
343 179 pbaillot
344 179 pbaillot
   \begin{lemma}\label{lem:welltyped}
345 181 pbaillot
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
346 181 pbaillot
 the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
347 179 pbaillot
   \end{lemma}
348 181 pbaillot
   \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
349 181 pbaillot
   \begin{proof}[Proof sketch]
350 181 pbaillot
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
351 181 pbaillot
352 181 pbaillot
   Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
353 181 pbaillot
   $\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
354 181 pbaillot
355 181 pbaillot
  Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
356 181 pbaillot
       \end{proof}
357 179 pbaillot
358 182 pbaillot
     \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
359 179 pbaillot
360 179 pbaillot
 \begin{theorem}
361 179 pbaillot
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent
362 179 pbaillot
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
363 179 pbaillot
   \begin{enumerate}
364 179 pbaillot
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
365 179 pbaillot
    \item $\pi$ is a well-typed and integer-positive proof.
366 179 pbaillot
   \end{enumerate}
367 179 pbaillot
   \end{theorem}