Révision 213
CSL17/arithmetic.tex (revision 213) | ||
---|---|---|
21 | 21 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
22 | 22 |
\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
23 | 23 |
\forall u^\normal \safe(u) \\ |
24 |
\forall u^\normal \safe(\hlf{u})\\
|
|
24 |
\forall u^\safe \safe(\hlf{u})\\
|
|
25 | 25 |
\forall x^\safe \safe(|x|) |
26 | 26 |
\end{array} |
27 | 27 |
\] |
28 |
\patrick{did I type writly the 2 last axioms?} |
|
28 |
%\patrick{did I type writly the 2 last axioms?}
|
|
29 | 29 |
|
30 | 30 |
and the list of axioms of Appendix \ref{appendix:arithmetic}, coming from \cite{Buss86book}. |
31 | 31 |
|
CSL17/ph-macros.tex (revision 213) | ||
---|---|---|
48 | 48 |
\newcommand{\orfn}{\textsc{or}} |
49 | 49 |
\newcommand{\notfn}{\textsc{not}} |
50 | 50 |
\newcommand{\equivfn}{\textsc{equiv}} |
51 |
\newcommand{\shorten}{\textsc{shorten}} |
|
51 | 52 |
|
53 |
|
|
52 | 54 |
\newcommand{\zerobit}{\textsc{0bit}} |
53 | 55 |
\newcommand{\onebit}{\textsc{1bit}} |
54 | 56 |
\newcommand{\pref}{\textsc{pref}} |
CSL17/preliminaries.tex (revision 213) | ||
---|---|---|
142 | 142 |
\begin{example} |
143 | 143 |
[Some simple functions] |
144 | 144 |
\label{ex:simple-bc-fns} |
145 |
\todo{Boolean predicates $\notfn, \andfn, \orfn, \equivfn$ .} |
|
146 |
\todo{$\bit$} |
|
145 |
% \todo{Boolean predicates $\notfn, \andfn, \orfn, \equivfn$ .} |
|
146 |
% \todo{$\bit$} |
|
147 |
Observe that: |
|
148 |
\begin{itemize} |
|
149 |
\item The boolean predicates $\notfn (;x)$, $\andfn(;x,y)$, $\orfn(;x,y)$, $\equivfn(;x,y)$ can all be defined on safe arguments, simply by computing by case distinction using the conditional $C(;x,y_{\epsilon}, y_0,y_1)$ function. |
|
150 |
%\item $\bit(l;x)$ returns the $\mode l$th bit of $x$. |
|
151 |
\item We can define the function $\bit(l;x)$ which returns the $|l|$th least significant bit of $x$. For instance $\bit(11;1010)=0$. |
|
147 | 152 |
|
148 |
$\bit(l;x)$ returns the $\mode l$th bit of $x$. |
|
153 |
For that let us first define the function $\shorten(l;x)$ which returns the $|x|- |l|$ prefix of $x$, as follows: |
|
154 |
\begin{eqnarray*} |
|
155 |
\shorten(\epsilon;x) &=&x\\ |
|
156 |
\shorten(li;x) &=&p(;\shorten(l;x)) |
|
157 |
\end{eqnarray*} |
|
158 |
Then we define $\bit(l;x)$ as follows: |
|
159 |
$$\bit(l;x)=C(;\shorten(pl;x),\epsilon,0,1).$$ |
|
160 |
\end{itemize} |
|
149 | 161 |
\end{example} |
150 | 162 |
|
151 | 163 |
|
152 |
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.} |
|
164 |
%\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.}
|
|
153 | 165 |
|
154 | 166 |
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, defined by using predicative minimization: |
155 | 167 |
\begin{definition}[$\mubc$ and $\mubc^i$ programs] |
Formats disponibles : Unified diff