Statistiques
| Révision :

root / CSL17 / soundness.tex @ 211

Historique | Voir | Annoter | Télécharger (8,07 ko)

1
\section{Soundness}
2
\label{sect:soundness}
3

    
4
The main result of this section is the following:
5

    
6
\begin{theorem}
7
	\label{thm:soundness}
8
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
9
\end{theorem}
10

    
11

    
12

    
13
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. 
14
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}.
15

    
16

    
17
\begin{definition}
18
[Length bounded basic functions]
19
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
20
\[
21
x \mode l = y \mode l
22
\]
23
which is definable by safe recursion on $l$:
24
\[
25
\begin{array}{rcl}
26
\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\
27
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
28
\end{array}
29
\]
30
We also define length-bounded inequality as:
31
\[
32
\begin{array}{rcl}
33
\leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\
34
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) )
35
\end{array}
36
\]
37
\end{definition}
38

    
39
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
40

    
41
Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
42

    
43
\begin{definition}
44
	[Length bounded characteristic functions]
45
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows.
46
%	If $A$ is a $\Pi_{i}$ formula then:
47
	\[
48
	\begin{array}{rcl}
49
	\charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
50
	\smallskip
51
	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
52
	\smallskip
53
	\charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
54
	\smallskip
55
	\charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
56
	\smallskip
57
	\charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
58
	\smallskip
59
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
60
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
61
	0 & \text{otherwise} 
62
	\end{cases} \\
63
	\smallskip
64
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & 
65
	\begin{cases}
66
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
67
	1 & \text{otherwise}
68
	\end{cases}
69
	\end{array}
70
	\]
71
\end{definition}
72

    
73

    
74
\begin{proposition}
75
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
76
\end{proposition}
77

    
78
\begin{definition}
79
	[Length bounded witness function]
80
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.
81
	\[
82
	\begin{array}{rcl}
83
	\Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
84
	\smallskip
85
	\Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
86
	\smallskip
87
	\Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
88
	\smallskip
89
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
90
	\\
91
	\smallskip
92
	\Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
93
	\forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
94
	\end{array}
95
	\]
96
\end{definition}
97

    
98
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
99

    
100
\anupam{sharply bounded case obtained by sharply bounded lemma}
101

    
102

    
103
\begin{proposition}
104
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true.
105
	\anupam{check statement, need proof-theoretic version?}
106
\end{proposition}
107

    
108
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
109

    
110

    
111
\begin{lemma}
112
	[Proof interpretation]
113
	\label{lem:proof-interp}
114
	For any $\arith^i$ proof of a $\Sigma^\safe_i$ sequent $\Gamma \seqar \Delta$, there is a $\mubci{i-1}$ function $f$ such that, for any $l, \vec u , \vec x  , w$, we have:
115
	\[
116
	\wit{\vec u ; \vec x}{ \wedge \Gamma } (l, \vec u ; \vec x , w) 
117
	\quad \leq \quad
118
	\wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w))
119
	\]
120
	\anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$}
121
	\anupam{Also, perhaps split for formulae of $\Gamma$, to avoid lots of (de)coding}
122
\end{lemma}
123
\begin{proof}
124
	We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section.
125
	This means that the predicate $\charfn{\vec u ; \vec x}{A}$ is defined for each formula $A(\vec u ; \vec x)$ occurring in a proof, so the theorem is well-stated.
126
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
127
	
128
	\paragraph*{Negation}
129
	Can assume only on atomic formulae, so no effect.	
130
	\paragraph*{Quantifiers}
131
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
132
	
133
	\paragraph*{Contraction}
134
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
135

    
136
	\paragraph*{Induction}
137
	Corresponds to safe recursion on notation.
138
	Suppose final step is:
139
	\[
140
	\vlinf{\pind}{}{\Gamma , \normal (t) , A(0) \seqar A(t) , \Delta}{ \left\{\Gamma , \normal (u) , A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
141
	\]
142
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
143
	
144
		Now, by the inductive hypothesis, we have functions $h_i$ such that:
145
		\[
146
		\wit{u , \vec u ; \vec x}{LHS} (l , u , \vec u ; \vec x ,  w) =1
147
		\quad \implies \quad
148
		\wit{u , \vec u ; \vec x}{RHS} (l , u , \vec u ; \vec x ,  h_i (u \mode l , \vec u \mode l ; \vec x \mode l) ) =1
149
		\]
150
	We define $ f$ as follows:
151
	\[
152
	\begin{array}{rcl}
153
	 f (0 , \vec u ; \vec x, \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn &  w^{A(0)} \\
154
	 f( \succ i u , \vec u ; \vec x , \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn & 
155
	 h_i (u , \vec u ; \vec x , \vec w^\Gamma w^{\normal (?)}, f(u , \vec u ; \vec x , \vec w ))
156
	\end{array}
157
	\]
158
	\anupam{Must check above, could be problems in recursive case.}
159
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
160
\end{proof}
161

    
162
We are now ready to prove the soundness theorem.
163

    
164
\begin{proof}
165
	[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
166
	(watch out for dependence on $l$, try do without)
167
	
168
	Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
169
	\[
170
	\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
171
	\]
172
	whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
173
	\[
174
	\vec u \mode l = \vec a \mode l
175
	\quad \implies \quad
176
	\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
177
	\]
178

    
179
	Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
180
\end{proof}
181