root / CSL17 / completeness.tex @ 210
Historique | Voir | Annoter | Télécharger (8,83 ko)
1 |
\section{Completeness}\label{sect:completeness} |
---|---|
2 |
|
3 |
The main result of this section is the following: |
4 |
|
5 |
\begin{theorem} |
6 |
\label{thm:completeness} |
7 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$. |
8 |
\end{theorem} |
9 |
|
10 |
The rest of this section is devoted to a proof of this theorem. |
11 |
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs. |
12 |
|
13 |
The property is easily verified for the class of initial functions of $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional. \patrick{Maybe we can refer here to Sect. \ref{sect:graphsbasicfunctions}.} Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. |
14 |
\paragraph*{Predicative minimisation} |
15 |
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. |
16 |
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that, |
17 |
\[ |
18 |
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y) |
19 |
\] |
20 |
Let us define $A_f(\vec u ; \vec x , z)$ as: |
21 |
\[ |
22 |
\begin{array}{rl} |
23 |
&\left( |
24 |
z=0 \ \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1) |
25 |
\right) \\ |
26 |
\cor & \left( |
27 |
\begin{array}{ll} |
28 |
z\neq 0 |
29 |
& \cand\ \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\ |
30 |
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) |
31 |
\end{array} |
32 |
\right) |
33 |
\end{array} |
34 |
\] |
35 |
Notice that $A_f$ is $\Pi^{\safe}_{i-1}$, since $A_g$ is $\Sigma^{\safe}_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context. |
36 |
In particular this means $A_f$ is $\Sigma^{\safe}_i$. |
37 |
|
38 |
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$: |
39 |
|
40 |
\begin{lemma} |
41 |
[Minimisation] |
42 |
$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$. |
43 |
\end{lemma} |
44 |
% see Thm 20 p. 58 in Buss' book. |
45 |
%\begin{proof} |
46 |
%\end{proof} |
47 |
This Lemma is proved by using the same method as for the proof of the analogous result in the bounded arithmetic $S_2^{i+1}$ (see \cite{Buss86book}, Thm 20, p. 58). |
48 |
|
49 |
\patrick{Examining it superficially, I think indeed the proof of Buss can be adapted to our setting. But we should probably look again at that with more scrutiny.} |
50 |
|
51 |
Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove: |
52 |
\[ |
53 |
\exists !z^\safe . A_f(\vec u ; \vec x , z) |
54 |
\] |
55 |
Suppose that $\exists x^\safe , y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. |
56 |
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. |
57 |
%\todo{verify $z\neq 0$ disjunct.} |
58 |
Then $z \neq 0$ holds. Moreover we had $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that |
59 |
$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that |
60 |
$\exists y^\safe . (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce |
61 |
$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction |
62 |
$A_f(\vec u ; \vec x , z)$ is proven. |
63 |
|
64 |
Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven. |
65 |
|
66 |
So we have proven $\exists z^\safe . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified. |
67 |
|
68 |
\paragraph*{Predicative recursion on notation} |
69 |
|
70 |
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay): |
71 |
\begin{itemize} |
72 |
% \item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$'' |
73 |
\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$'' |
74 |
\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.'' |
75 |
\end{itemize} |
76 |
} |
77 |
\patrick{I also assume access to the following predicates: |
78 |
\begin{itemize} |
79 |
\item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)" |
80 |
\item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" |
81 |
\item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$. |
82 |
\end{itemize}} |
83 |
Now suppose that $f$ is defined by PRN: |
84 |
\[ |
85 |
\begin{array}{rcl} |
86 |
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\ |
87 |
f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x)) |
88 |
\end{array} |
89 |
\] |
90 |
|
91 |
\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.} |
92 |
|
93 |
Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$. |
94 |
We define $A_f (u ,\vec u ; \vec x , y)$ as, |
95 |
\[ |
96 |
\exists w^\safe . \left( |
97 |
\begin{array}{ll} |
98 |
& |
99 |
%Seq(z) \cand |
100 |
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\ |
101 |
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\ |
102 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
103 |
\end{array} |
104 |
\right) |
105 |
\] |
106 |
where |
107 |
\[ |
108 |
B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left( |
109 |
\begin{array}{ll} |
110 |
& \zerobit(u,k+1) \cimp \exists v .(\pref(k,u,v) \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\ |
111 |
\cand & \onebit(u,k+1) \cimp \exists v .(\pref(k,u,v) \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) ) |
112 |
\end{array} |
113 |
\right) |
114 |
\] |
115 |
|
116 |
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$. |
117 |
|
118 |
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$. |
119 |
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show: |
120 |
\[ |
121 |
\exists y^\safe . A_f (u , \vec u ; \vec x , y) |
122 |
\quad \seqar \quad |
123 |
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z) |
124 |
\] |
125 |
|
126 |
So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and |
127 |
$A_f (u , \vec u ; \vec x , w) $. |
128 |
|
129 |
We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that |
130 |
$\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$ |
131 |
|
132 |
So we have, for $k=|u|$: |
133 |
|
134 |
$$ \beta (k, w', y) \cand \beta (k+1 ,w', z) \cand B (u , \vec u ; \vec x , y , z).$$ |
135 |
|
136 |
and we can conclude that |
137 |
\[ |
138 |
\exists w'^\safe . \left( |
139 |
\begin{array}{ll} |
140 |
& |
141 |
%Seq(z) \cand |
142 |
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\ |
143 |
\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
144 |
\end{array} |
145 |
\right) |
146 |
\] |
147 |
So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u, |
148 |
\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula. |
149 |
|
150 |
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.} |
151 |
|
152 |
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
153 |
|
154 |
\paragraph*{Safe composition} |
155 |
Now suppose that $f$ is defined by safe composition: |
156 |
\[ |
157 |
f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) ) |
158 |
\] |
159 |
|
160 |
By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc. |
161 |
In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$. |
162 |
|
163 |
We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows: |
164 |
\[ |
165 |
\exists \vec v^\normal . \exists \vec y^\safe . |
166 |
\left( |
167 |
\bigwedge\limits_i A_{h_i} (\vec u , v_i) |
168 |
\wedge |
169 |
\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j) |
170 |
\wedge |
171 |
A_g ( \vec v , \vec y , z ) |
172 |
\right) |
173 |
\] |
174 |
The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations. |
175 |
|
176 |
\todo{elaborate} |
177 |
|
178 |
The proof of Thm \ref{thm:completeness} is thus completed. |
179 |
|
180 |
|
181 |
|
182 |
|
183 |
|
184 |
|
185 |
|
186 |
|
187 |
|
188 |
|
189 |
|
190 |
|
191 |
|
192 |
|
193 |
|
194 |
|
195 |
|
196 |
|
197 |
|
198 |
|
199 |
|
200 |
|
201 |
|