Statistiques
| Révision :

root / CSL17 / completeness.tex @ 208

Historique | Voir | Annoter | Télécharger (8,83 ko)

1 206 pbaillot
\section{Completeness}\label{sect:completeness}
2 166 adas
3 166 adas
The main result of this section is the following:
4 166 adas
5 166 adas
\begin{theorem}
6 166 adas
	\label{thm:completeness}
7 199 pbaillot
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 168 adas
\end{theorem}
9 168 adas
10 168 adas
The rest of this section is devoted to a proof of this theorem.
11 197 pbaillot
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
12 168 adas
13 199 pbaillot
 The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional. \patrick{Maybe we can refer here to Sect. \ref{sect:graphsbasicfunctions}.} Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition.
14 168 adas
\paragraph*{Predicative minimisation}
15 168 adas
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$.
16 198 pbaillot
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
17 168 adas
\[
18 168 adas
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
19 168 adas
\]
20 168 adas
Let us define $A_f(\vec u ; \vec x , z)$ as:
21 168 adas
\[
22 168 adas
\begin{array}{rl}
23 168 adas
&\left(
24 168 adas
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
25 168 adas
\right) \\
26 168 adas
\cor & \left(
27 168 adas
\begin{array}{ll}
28 168 adas
z\neq 0
29 168 adas
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
30 168 adas
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
31 168 adas
\end{array}
32 168 adas
\right)
33 168 adas
\end{array}
34 168 adas
\]
35 198 pbaillot
Notice that $A_f$ is $\Pi^{\safe}_{i-1}$, since $A_g$ is $\Sigma^{\safe}_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
36 198 pbaillot
In particular this means $A_f$ is $\Sigma^{\safe}_i$.
37 168 adas
38 168 adas
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
39 168 adas
40 168 adas
\begin{lemma}
41 168 adas
[Minimisation]
42 168 adas
$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.
43 168 adas
\end{lemma}
44 174 pbaillot
% see Thm 20 p. 58 in Buss' book.
45 198 pbaillot
%\begin{proof}
46 198 pbaillot
%\end{proof}
47 198 pbaillot
 This Lemma is proved by using the same method as for the proof of the analogous result in the bounded arithmetic $S_2^{i+1}$ (see \cite{Buss86book}, Thm 20, p. 58).
48 168 adas
49 198 pbaillot
\patrick{Examining it superficially, I think indeed the proof of Buss can be adapted to our setting. But we should probably look again at that with more scrutiny.}
50 198 pbaillot
51 168 adas
Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
52 168 adas
\[
53 168 adas
\exists !z^\safe  . A_f(\vec u ; \vec x , z)
54 168 adas
\]
55 168 adas
Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
56 170 pbaillot
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$.
57 170 pbaillot
%\todo{verify $z\neq 0$ disjunct.}
58 170 pbaillot
Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
59 170 pbaillot
 $\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
60 170 pbaillot
  $\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce
61 170 pbaillot
 $\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
62 170 pbaillot
 $A_f(\vec u ; \vec x , z)$ is proven.
63 168 adas
64 170 pbaillot
 Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.
65 168 adas
66 170 pbaillot
So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
67 168 adas
68 168 adas
\paragraph*{Predicative recursion on notation}
69 171 adas
70 171 adas
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
71 171 adas
	\begin{itemize}
72 171 adas
	%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
73 171 adas
		\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
74 171 adas
		\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
75 171 adas
	\end{itemize}
76 171 adas
	}
77 195 pbaillot
\patrick{I also assume access to the following predicates:
78 195 pbaillot
\begin{itemize}
79 195 pbaillot
   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
80 195 pbaillot
   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$"
81 197 pbaillot
   \item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
82 195 pbaillot
\end{itemize}}
83 168 adas
Now suppose that $f$ is defined by PRN:
84 168 adas
\[
85 168 adas
\begin{array}{rcl}
86 168 adas
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
87 168 adas
f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
88 168 adas
\end{array}
89 168 adas
\]
90 168 adas
91 168 adas
\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
92 168 adas
93 168 adas
Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
94 168 adas
We define $A_f (u ,\vec u ; \vec x , y)$ as,
95 168 adas
\[
96 168 adas
\exists w^\safe . \left(
97 168 adas
\begin{array}{ll}
98 168 adas
&
99 168 adas
%Seq(z) \cand
100 168 adas
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
101 197 pbaillot
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
102 195 pbaillot
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
103 168 adas
\end{array}
104 168 adas
\right)
105 168 adas
\]
106 197 pbaillot
where
107 197 pbaillot
\[
108 197 pbaillot
B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left(
109 197 pbaillot
\begin{array}{ll}
110 197 pbaillot
& \zerobit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\
111 197 pbaillot
\cand &  \onebit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) )
112 197 pbaillot
\end{array}
113 197 pbaillot
\right)
114 197 pbaillot
\]
115 195 pbaillot
116 196 pbaillot
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
117 195 pbaillot
118 168 adas
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
119 168 adas
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
120 168 adas
\[
121 168 adas
\exists y^\safe . A_f (u , \vec u ; \vec x , y)
122 168 adas
\quad \seqar \quad
123 197 pbaillot
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z)
124 168 adas
\]
125 168 adas
126 197 pbaillot
So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and
127 197 pbaillot
 $A_f (u , \vec u ; \vec x , w) $.
128 197 pbaillot
129 197 pbaillot
 We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that
130 197 pbaillot
 $\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$
131 197 pbaillot
132 197 pbaillot
 So we have, for $k=|u|$:
133 197 pbaillot
134 197 pbaillot
 $$  \beta (k, w', y) \cand \beta (k+1 ,w', z)  \cand B (u , \vec u ; \vec x , y , z).$$
135 197 pbaillot
136 197 pbaillot
  and we can conclude that
137 197 pbaillot
   \[
138 197 pbaillot
\exists w'^\safe . \left(
139 197 pbaillot
\begin{array}{ll}
140 197 pbaillot
&
141 197 pbaillot
%Seq(z) \cand
142 197 pbaillot
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\
143 197 pbaillot
\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
144 197 pbaillot
\end{array}
145 197 pbaillot
\right)
146 197 pbaillot
\]
147 197 pbaillot
So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u,
148 197 pbaillot
\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula.
149 197 pbaillot
150 168 adas
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
151 168 adas
152 168 adas
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
153 168 adas
154 168 adas
\paragraph*{Safe composition}
155 168 adas
Now suppose that $f$ is defined by safe composition:
156 168 adas
\[
157 168 adas
f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
158 168 adas
\]
159 168 adas
160 168 adas
By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
161 168 adas
In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
162 168 adas
163 168 adas
We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
164 168 adas
\[
165 168 adas
\exists \vec v^\normal . \exists \vec y^\safe .
166 168 adas
\left(
167 168 adas
\bigwedge\limits_i A_{h_i} (\vec u , v_i)
168 168 adas
\wedge
169 168 adas
\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
170 168 adas
\wedge
171 168 adas
A_g ( \vec v , \vec y , z )
172 168 adas
\right)
173 168 adas
\]
174 168 adas
The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
175 168 adas
176 168 adas
\todo{elaborate}
177 168 adas
178 199 pbaillot
The proof of Thm \ref{thm:completeness} is thus completed.
179 168 adas
180 168 adas
181 168 adas
182 168 adas
183 168 adas
184 168 adas
185 168 adas
186 168 adas
187 168 adas
188 168 adas
189 168 adas
190 168 adas
191 168 adas
192 168 adas
193 168 adas
194 168 adas
195 168 adas
196 168 adas
197 168 adas
198 168 adas
199 168 adas
200 168 adas