Révision 205 CSL17/soundness.tex

soundness.tex (revision 205)
101 101

  
102 102

  
103 103
\begin{proposition}
104
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A$ is true.
104
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true.
105 105
	\anupam{check statement, need proof-theoretic version?}
106 106
\end{proposition}
107 107

  
......
118 118
	\wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w))
119 119
	\]
120 120
	\anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$}
121
	\anupam{Also, perhaps split for formulae of $\Gamma$, to avoid lots of (de)coding}
121 122
\end{lemma}
122 123
\begin{proof}
123 124
	We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section.
......
134 135

  
135 136
	\paragraph*{Induction}
136 137
	Corresponds to safe recursion on notation.
138
	Suppose final step is:
139
	\[
140
	\vlinf{\pind}{}{\Gamma , \normal (t) , A(0) \seqar A(t) , \Delta}{ \left\{\Gamma , \normal (u) , A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} }
141
	\]
142
	For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!}
143
	
144
		Now, by the inductive hypothesis, we have functions $h_i$ such that:
145
		\[
146
		\wit{u , \vec u ; \vec x}{LHS} (l , u , \vec u ; \vec x ,  w) =1
147
		\quad \implies \quad
148
		\wit{u , \vec u ; \vec x}{RHS} (l , u , \vec u ; \vec x ,  h_i (u \mode l , \vec u \mode l ; \vec x \mode l) ) =1
149
		\]
150
	We define $ f$ as follows:
151
	\[
152
	\begin{array}{rcl}
153
	 f (0 , \vec u ; \vec x, \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn &  w^{A(0)} \\
154
	 f( \succ i u , \vec u ; \vec x , \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn & 
155
	 h_i (u , \vec u ; \vec x , \vec w^\Gamma w^{\normal (?)}, f(u , \vec u ; \vec x , \vec w ))
156
	\end{array}
157
	\]
158
	\anupam{Must check above, could be problems in recursive case.}
159
	\anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.}
137 160
\end{proof}
138 161

  
139 162
We are now ready to prove the soundness theorem.
......
150 173
	\[
151 174
	\vec u \mode l = \vec a \mode l
152 175
	\quad \implies \quad
153
	\wit{\vec u ; }{A} ( l , \vec u , f(l, \vec u;) ) =1
176
	\wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1
154 177
	\]
155
	
178

  
156 179
	Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
157 180
\end{proof}
158 181

  

Formats disponibles : Unified diff