root / CSL17 / soundness.tex @ 205
Historique | Voir | Annoter | Télécharger (8,07 ko)
1 | 166 | adas | \section{Soundness} |
---|---|---|---|
2 | 168 | adas | \label{sect:soundness} |
3 | 168 | adas | |
4 | 168 | adas | The main result of this section is the following: |
5 | 168 | adas | |
6 | 168 | adas | \begin{theorem} |
7 | 202 | adas | \label{thm:soundness} |
8 | 168 | adas | If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
9 | 168 | adas | \end{theorem} |
10 | 168 | adas | |
11 | 171 | adas | |
12 | 172 | adas | |
13 | 172 | adas | The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. |
14 | 172 | adas | For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}. |
15 | 172 | adas | |
16 | 201 | adas | |
17 | 172 | adas | \begin{definition} |
18 | 172 | adas | [Length bounded basic functions] |
19 | 172 | adas | We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate: |
20 | 172 | adas | \[ |
21 | 172 | adas | x \mode l = y \mode l |
22 | 172 | adas | \] |
23 | 201 | adas | which is definable by safe recursion on $l$: |
24 | 201 | adas | \[ |
25 | 201 | adas | \begin{array}{rcl} |
26 | 201 | adas | \eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\ |
27 | 201 | adas | \eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y )) ) |
28 | 201 | adas | \end{array} |
29 | 201 | adas | \] |
30 | 202 | adas | We also define length-bounded inequality as: |
31 | 202 | adas | \[ |
32 | 202 | adas | \begin{array}{rcl} |
33 | 202 | adas | \leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\ |
34 | 202 | adas | \leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) ) |
35 | 202 | adas | \end{array} |
36 | 202 | adas | \] |
37 | 172 | adas | \end{definition} |
38 | 172 | adas | |
39 | 172 | adas | \anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
40 | 172 | adas | |
41 | 172 | adas | Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems. |
42 | 172 | adas | |
43 | 172 | adas | \begin{definition} |
44 | 172 | adas | [Length bounded characteristic functions] |
45 | 172 | adas | We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows. |
46 | 172 | adas | % If $A$ is a $\Pi_{i}$ formula then: |
47 | 172 | adas | \[ |
48 | 172 | adas | \begin{array}{rcl} |
49 | 202 | adas | \charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
50 | 172 | adas | \smallskip |
51 | 202 | adas | \charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
52 | 172 | adas | \smallskip |
53 | 202 | adas | \charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\ |
54 | 172 | adas | \smallskip |
55 | 202 | adas | \charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\ |
56 | 172 | adas | \smallskip |
57 | 202 | adas | \charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\ |
58 | 172 | adas | \smallskip |
59 | 202 | adas | \charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
60 | 202 | adas | 1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
61 | 172 | adas | 0 & \text{otherwise} |
62 | 172 | adas | \end{cases} \\ |
63 | 172 | adas | \smallskip |
64 | 202 | adas | \charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
65 | 172 | adas | \begin{cases} |
66 | 173 | adas | 0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
67 | 172 | adas | 1 & \text{otherwise} |
68 | 172 | adas | \end{cases} |
69 | 172 | adas | \end{array} |
70 | 172 | adas | \] |
71 | 173 | adas | \end{definition} |
72 | 173 | adas | |
73 | 173 | adas | |
74 | 176 | adas | \begin{proposition} |
75 | 176 | adas | $\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
76 | 176 | adas | \end{proposition} |
77 | 176 | adas | |
78 | 173 | adas | \begin{definition} |
79 | 173 | adas | [Length bounded witness function] |
80 | 173 | adas | We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$. |
81 | 173 | adas | \[ |
82 | 173 | adas | \begin{array}{rcl} |
83 | 173 | adas | \Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
84 | 173 | adas | \smallskip |
85 | 173 | adas | \Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
86 | 173 | adas | \smallskip |
87 | 173 | adas | \Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
88 | 173 | adas | \smallskip |
89 | 173 | adas | \Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
90 | 173 | adas | \\ |
91 | 173 | adas | \smallskip |
92 | 173 | adas | \Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
93 | 173 | adas | \forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
94 | 173 | adas | \end{array} |
95 | 173 | adas | \] |
96 | 173 | adas | \end{definition} |
97 | 173 | adas | |
98 | 173 | adas | \anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.} |
99 | 173 | adas | |
100 | 202 | adas | \anupam{sharply bounded case obtained by sharply bounded lemma} |
101 | 202 | adas | |
102 | 202 | adas | |
103 | 202 | adas | \begin{proposition} |
104 | 205 | adas | If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A (\vec u \mode l ; \vec x \mode l)$ is true. |
105 | 202 | adas | \anupam{check statement, need proof-theoretic version?} |
106 | 202 | adas | \end{proposition} |
107 | 202 | adas | |
108 | 202 | adas | In order to prove Thm.~\ref{thm:soundness} we need the following lemma: |
109 | 202 | adas | |
110 | 202 | adas | |
111 | 202 | adas | \begin{lemma} |
112 | 202 | adas | [Proof interpretation] |
113 | 202 | adas | \label{lem:proof-interp} |
114 | 202 | adas | For any $\arith^i$ proof of a $\Sigma^\safe_i$ sequent $\Gamma \seqar \Delta$, there is a $\mubci{i-1}$ function $f$ such that, for any $l, \vec u , \vec x , w$, we have: |
115 | 202 | adas | \[ |
116 | 202 | adas | \wit{\vec u ; \vec x}{ \wedge \Gamma } (l, \vec u ; \vec x , w) |
117 | 202 | adas | \quad \leq \quad |
118 | 202 | adas | \wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w)) |
119 | 202 | adas | \] |
120 | 202 | adas | \anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$} |
121 | 205 | adas | \anupam{Also, perhaps split for formulae of $\Gamma$, to avoid lots of (de)coding} |
122 | 202 | adas | \end{lemma} |
123 | 202 | adas | \begin{proof} |
124 | 202 | adas | We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section. |
125 | 202 | adas | This means that the predicate $\charfn{\vec u ; \vec x}{A}$ is defined for each formula $A(\vec u ; \vec x)$ occurring in a proof, so the theorem is well-stated. |
126 | 202 | adas | We define the function $f$ inductively, by considering the various final rules of $\pi$. |
127 | 202 | adas | |
128 | 202 | adas | \paragraph*{Negation} |
129 | 202 | adas | Can assume only on atomic formulae, so no effect. |
130 | 202 | adas | \paragraph*{Quantifiers} |
131 | 202 | adas | \anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
132 | 202 | adas | |
133 | 202 | adas | \paragraph*{Contraction} |
134 | 202 | adas | Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
135 | 202 | adas | |
136 | 202 | adas | \paragraph*{Induction} |
137 | 202 | adas | Corresponds to safe recursion on notation. |
138 | 205 | adas | Suppose final step is: |
139 | 205 | adas | \[ |
140 | 205 | adas | \vlinf{\pind}{}{\Gamma , \normal (t) , A(0) \seqar A(t) , \Delta}{ \left\{\Gamma , \normal (u) , A(u) \seqar A(\succ i u ) , \Delta \right\}_{i=0,1} } |
141 | 205 | adas | \] |
142 | 205 | adas | For simplicity we will assume $\Delta $ is empty, which we can always do by Prop.~\todo{DO THIS!} |
143 | 205 | adas | |
144 | 205 | adas | Now, by the inductive hypothesis, we have functions $h_i$ such that: |
145 | 205 | adas | \[ |
146 | 205 | adas | \wit{u , \vec u ; \vec x}{LHS} (l , u , \vec u ; \vec x , w) =1 |
147 | 205 | adas | \quad \implies \quad |
148 | 205 | adas | \wit{u , \vec u ; \vec x}{RHS} (l , u , \vec u ; \vec x , h_i (u \mode l , \vec u \mode l ; \vec x \mode l) ) =1 |
149 | 205 | adas | \] |
150 | 205 | adas | We define $ f$ as follows: |
151 | 205 | adas | \[ |
152 | 205 | adas | \begin{array}{rcl} |
153 | 205 | adas | f (0 , \vec u ; \vec x, \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn & w^{A(0)} \\ |
154 | 205 | adas | f( \succ i u , \vec u ; \vec x , \vec w^\Gamma , w^{\normal (t)} , w^{A(0)}) & \dfn & |
155 | 205 | adas | h_i (u , \vec u ; \vec x , \vec w^\Gamma w^{\normal (?)}, f(u , \vec u ; \vec x , \vec w )) |
156 | 205 | adas | \end{array} |
157 | 205 | adas | \] |
158 | 205 | adas | \anupam{Must check above, could be problems in recursive case.} |
159 | 205 | adas | \anupam{Wait, should $\normal (t)$ have a witness? Also there is a problem like Patrick said for formulae like: $\forall x^\safe . \exists y^\safe. (\normal (z) \cor \cnot \normal (z))$, where $z$ is $y$ or otherwise.} |
160 | 202 | adas | \end{proof} |
161 | 202 | adas | |
162 | 202 | adas | We are now ready to prove the soundness theorem. |
163 | 202 | adas | |
164 | 202 | adas | \begin{proof} |
165 | 202 | adas | [Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
166 | 202 | adas | (watch out for dependence on $l$, try do without) |
167 | 202 | adas | |
168 | 202 | adas | Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of, |
169 | 202 | adas | \[ |
170 | 202 | adas | \normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;) |
171 | 202 | adas | \] |
172 | 202 | adas | whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that: |
173 | 202 | adas | \[ |
174 | 202 | adas | \vec u \mode l = \vec a \mode l |
175 | 202 | adas | \quad \implies \quad |
176 | 205 | adas | \wit{\vec u ; }{A} ( l , \vec u , f(\vec u \mode l;) ) =1 |
177 | 202 | adas | \] |
178 | 205 | adas | |
179 | 202 | adas | Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma. |
180 | 202 | adas | \end{proof} |