Révision 202 CSL17/soundness.tex

soundness.tex (revision 202)
4 4
The main result of this section is the following:
5 5

  
6 6
\begin{theorem}
7
	\label{thm:soundness}
7 8
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
8 9
\end{theorem}
9 10

  
......
26 27
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
27 28
\end{array}
28 29
\]
30
We also define length-bounded inequality as:
31
\[
32
\begin{array}{rcl}
33
\leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\
34
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) )
35
\end{array}
36
\]
29 37
\end{definition}
30 38

  
31 39
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
......
38 46
%	If $A$ is a $\Pi_{i}$ formula then:
39 47
	\[
40 48
	\begin{array}{rcl}
41
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\
49
	\charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\
42 50
	\smallskip
43
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\
51
	\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\
44 52
	\smallskip
45
	\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
53
	\charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
46 54
	\smallskip
47
	\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
55
	\charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
48 56
	\smallskip
49
	\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
57
	\charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
50 58
	\smallskip
51
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x,  w) & \dfn & \begin{cases}
52
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x, w) = 1 \\
59
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases}
60
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\
53 61
	0 & \text{otherwise} 
54 62
	\end{cases} \\
55 63
	\smallskip
56
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
64
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & 
57 65
	\begin{cases}
58 66
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
59 67
	1 & \text{otherwise}
......
89 97

  
90 98
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
91 99

  
92
\anupam{sharply bounded case obtained by sharply bounded lemma}
100
\anupam{sharply bounded case obtained by sharply bounded lemma}
101

  
102

  
103
\begin{proposition}
104
	If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A$ is true.
105
	\anupam{check statement, need proof-theoretic version?}
106
\end{proposition}
107

  
108
In order to prove Thm.~\ref{thm:soundness} we need the following lemma:
109

  
110

  
111
\begin{lemma}
112
	[Proof interpretation]
113
	\label{lem:proof-interp}
114
	For any $\arith^i$ proof of a $\Sigma^\safe_i$ sequent $\Gamma \seqar \Delta$, there is a $\mubci{i-1}$ function $f$ such that, for any $l, \vec u , \vec x  , w$, we have:
115
	\[
116
	\wit{\vec u ; \vec x}{ \wedge \Gamma } (l, \vec u ; \vec x , w) 
117
	\quad \leq \quad
118
	\wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w))
119
	\]
120
	\anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$}
121
\end{lemma}
122
\begin{proof}
123
	We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section.
124
	This means that the predicate $\charfn{\vec u ; \vec x}{A}$ is defined for each formula $A(\vec u ; \vec x)$ occurring in a proof, so the theorem is well-stated.
125
	We define the function $f$ inductively, by considering the various final rules of $\pi$.
126
	
127
	\paragraph*{Negation}
128
	Can assume only on atomic formulae, so no effect.	
129
	\paragraph*{Quantifiers}
130
	\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.}
131
	
132
	\paragraph*{Contraction}
133
	Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula.
134

  
135
	\paragraph*{Induction}
136
	Corresponds to safe recursion on notation.
137
\end{proof}
138

  
139
We are now ready to prove the soundness theorem.
140

  
141
\begin{proof}
142
	[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}]
143
	(watch out for dependence on $l$, try do without)
144
	
145
	Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of,
146
	\[
147
	\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;)
148
	\]
149
	whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that:
150
	\[
151
	\vec u \mode l = \vec a \mode l
152
	\quad \implies \quad
153
	\wit{\vec u ; }{A} ( l , \vec u , f(l, \vec u;) ) =1
154
	\]
155
	
156
	Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma.
157
\end{proof}
158

  

Formats disponibles : Unified diff