Révision 202
CSL17/soundness.tex (revision 202) | ||
---|---|---|
4 | 4 |
The main result of this section is the following: |
5 | 5 |
|
6 | 6 |
\begin{theorem} |
7 |
\label{thm:soundness} |
|
7 | 8 |
If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
8 | 9 |
\end{theorem} |
9 | 10 |
|
... | ... | |
26 | 27 |
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y )) ) |
27 | 28 |
\end{array} |
28 | 29 |
\] |
30 |
We also define length-bounded inequality as: |
|
31 |
\[ |
|
32 |
\begin{array}{rcl} |
|
33 |
\leqfn (0 ; x ,y) & \dfn & \cimp (; \bit (0;x), \bit (0;y) ) \\ |
|
34 |
\leqfn (\succ i l ; x,y) & \dfn & \orfn ( ; <(\bit (\succ i l ; x) , \bit(\succ i l ; y) ) , \andfn (; \equivfn (\bit (\succ i l ; x) , \bit(\succ i l ; y)) , \leqfn (l;x,y ) ) ) |
|
35 |
\end{array} |
|
36 |
\] |
|
29 | 37 |
\end{definition} |
30 | 38 |
|
31 | 39 |
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
... | ... | |
38 | 46 |
% If $A$ is a $\Pi_{i}$ formula then: |
39 | 47 |
\[ |
40 | 48 |
\begin{array}{rcl} |
41 |
\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\
|
|
49 |
\charfn{}{s\leq t} (l, \vec u ; \vec x) & \dfn & \leqfn(l;s,t) \\ |
|
42 | 50 |
\smallskip |
43 |
\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\
|
|
51 |
\charfn{}{s=t} (l, \vec u ; \vec x) & \dfn & \eq(l;s,t) \\ |
|
44 | 52 |
\smallskip |
45 |
\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
|
|
53 |
\charfn{}{\neg A} (l, \vec u ; \vec x) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\ |
|
46 | 54 |
\smallskip |
47 |
\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
|
|
55 |
\charfn{}{A\cor B} (l, \vec u ; \vec x ) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
|
|
48 | 56 |
\smallskip |
49 |
\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
|
|
57 |
\charfn{}{A\cand B} (l, \vec u ; \vec x ) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x) ) \\
|
|
50 | 58 |
\smallskip |
51 |
\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x, w) & \dfn & \begin{cases}
|
|
52 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x, w) = 1 \\
|
|
59 |
\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x) & \dfn & \begin{cases} |
|
60 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x) = 1 \\ |
|
53 | 61 |
0 & \text{otherwise} |
54 | 62 |
\end{cases} \\ |
55 | 63 |
\smallskip |
56 |
\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn &
|
|
64 |
\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x ) & \dfn & |
|
57 | 65 |
\begin{cases} |
58 | 66 |
0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
59 | 67 |
1 & \text{otherwise} |
... | ... | |
89 | 97 |
|
90 | 98 |
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.} |
91 | 99 |
|
92 |
\anupam{sharply bounded case obtained by sharply bounded lemma} |
|
100 |
\anupam{sharply bounded case obtained by sharply bounded lemma} |
|
101 |
|
|
102 |
|
|
103 |
\begin{proposition} |
|
104 |
If, for some $w$, $\wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x,w) =1$, then $A$ is true. |
|
105 |
\anupam{check statement, need proof-theoretic version?} |
|
106 |
\end{proposition} |
|
107 |
|
|
108 |
In order to prove Thm.~\ref{thm:soundness} we need the following lemma: |
|
109 |
|
|
110 |
|
|
111 |
\begin{lemma} |
|
112 |
[Proof interpretation] |
|
113 |
\label{lem:proof-interp} |
|
114 |
For any $\arith^i$ proof of a $\Sigma^\safe_i$ sequent $\Gamma \seqar \Delta$, there is a $\mubci{i-1}$ function $f$ such that, for any $l, \vec u , \vec x , w$, we have: |
|
115 |
\[ |
|
116 |
\wit{\vec u ; \vec x}{ \wedge \Gamma } (l, \vec u ; \vec x , w) |
|
117 |
\quad \leq \quad |
|
118 |
\wit{\vec u ; \vec x}{\vee \Delta} (l, \vec u ; \vec x , f(l, \vec u ; \vec x , w)) |
|
119 |
\] |
|
120 |
\anupam{maybe want $f(\vec u \mode l ; \vec x \mode l , w)$} |
|
121 |
\end{lemma} |
|
122 |
\begin{proof} |
|
123 |
We assume the proof, say $\pi$, is in integer positive free-cut free form, by the results from the previous section. |
|
124 |
This means that the predicate $\charfn{\vec u ; \vec x}{A}$ is defined for each formula $A(\vec u ; \vec x)$ occurring in a proof, so the theorem is well-stated. |
|
125 |
We define the function $f$ inductively, by considering the various final rules of $\pi$. |
|
126 |
|
|
127 |
\paragraph*{Negation} |
|
128 |
Can assume only on atomic formulae, so no effect. |
|
129 |
\paragraph*{Quantifiers} |
|
130 |
\anupam{Do $\exists$-right and $\forall$-right, left rules are symmetric.} |
|
131 |
|
|
132 |
\paragraph*{Contraction} |
|
133 |
Left contraction simply duplicates an argument, whereas right contraction requires a conditional on a $\Sigma^\safe_i$ formula. |
|
134 |
|
|
135 |
\paragraph*{Induction} |
|
136 |
Corresponds to safe recursion on notation. |
|
137 |
\end{proof} |
|
138 |
|
|
139 |
We are now ready to prove the soundness theorem. |
|
140 |
|
|
141 |
\begin{proof} |
|
142 |
[Proof of Thm.~\ref{thm:soundness} from Lemma~\ref{lem:proof-interp}] |
|
143 |
(watch out for dependence on $l$, try do without) |
|
144 |
|
|
145 |
Suppose $\arith^i \proves \forall \vec u^\normal . \exists x^\normal . A(\vec u ; x)$. Then by raising, inversion, free-variable normal forms, we have a proof of, |
|
146 |
\[ |
|
147 |
\normal (\vec u ) \seqar \exists x^\normal . A(\vec u , x ;) |
|
148 |
\] |
|
149 |
whence, by Lemma~\ref{lem:proof-interp}, we have a $\mubci{i-1}$ function $f$ such that: |
|
150 |
\[ |
|
151 |
\vec u \mode l = \vec a \mode l |
|
152 |
\quad \implies \quad |
|
153 |
\wit{\vec u ; }{A} ( l , \vec u , f(l, \vec u;) ) =1 |
|
154 |
\] |
|
155 |
|
|
156 |
Now it suffices to choose an $l$ bigger that both all the $\vec u$ and $f(\vec u)$, which is a polynomial in $\vec u$ by the polymax bounding lemma. |
|
157 |
\end{proof} |
|
158 |
|
Formats disponibles : Unified diff