Révision 201
CSL17/soundness.tex (revision 201) | ||
---|---|---|
12 | 12 |
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. |
13 | 13 |
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}. |
14 | 14 |
|
15 |
|
|
15 | 16 |
\begin{definition} |
16 | 17 |
[Length bounded basic functions] |
17 | 18 |
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate: |
18 | 19 |
\[ |
19 | 20 |
x \mode l = y \mode l |
20 | 21 |
\] |
22 |
which is definable by safe recursion on $l$: |
|
23 |
\[ |
|
24 |
\begin{array}{rcl} |
|
25 |
\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\ |
|
26 |
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y )) ) |
|
27 |
\end{array} |
|
28 |
\] |
|
21 | 29 |
\end{definition} |
22 | 30 |
|
23 | 31 |
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
CSL17/ph-macros.tex (revision 201) | ||
---|---|---|
43 | 43 |
\newcommand{\pair}[3]{\langle ; #1,#2 , #3 \rangle} |
44 | 44 |
\newcommand{\eq}{\textsc{eq}} |
45 | 45 |
\newcommand{\leqfn}{\textsc{leq}} |
46 |
\newcommand{\bit}{\textsc{Bit}} |
|
46 |
\newcommand{\bit}{\textsc{bit}} |
|
47 |
\newcommand{\andfn}{\textsc{and}} |
|
48 |
\newcommand{\orfn}{\textsc{or}} |
|
49 |
\newcommand{\notfn}{\textsc{not}} |
|
50 |
\newcommand{\equivfn}{\textsc{equiv}} |
|
47 | 51 |
|
48 | 52 |
\newcommand{\zerobit}{\textsc{0bit}} |
49 | 53 |
\newcommand{\onebit}{\textsc{1bit}} |
CSL17/preliminaries.tex (revision 201) | ||
---|---|---|
137 | 137 |
|
138 | 138 |
%\nb{TODO: extend with $\mu$s.} |
139 | 139 |
|
140 |
\anupam{Should add $+(;x,y)$ as a basic function (check satisfies polychecking lemma!), since otherwise not definable with safe input. Then define unary successor $\succ{} (;x)$ as $+(;x,\succ 1 0)$. } |
|
140 | 141 |
|
142 |
\begin{example} |
|
143 |
[Some simple functions] |
|
144 |
\label{ex:simple-bc-fns} |
|
145 |
\todo{Boolean predicates $\notfn, \andfn, \orfn, \equivfn$ .} |
|
146 |
\todo{$\bit$} |
|
147 |
|
|
148 |
$\bit(l;x)$ returns the $\mode l$th bit of $x$. |
|
149 |
\end{example} |
|
150 |
|
|
151 |
|
|
141 | 152 |
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.} |
142 | 153 |
|
143 | 154 |
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, defined by using predicative minimization: |
Formats disponibles : Unified diff