Révision 201

CSL17/soundness.tex (revision 201)
12 12
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. 
13 13
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}.
14 14

  
15

  
15 16
\begin{definition}
16 17
[Length bounded basic functions]
17 18
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
18 19
\[
19 20
x \mode l = y \mode l
20 21
\]
22
which is definable by safe recursion on $l$:
23
\[
24
\begin{array}{rcl}
25
\eq (0 ; x,y) & \dfn & \equivfn (;\bit (0;x),\bit(0;y) ) \\
26
\eq (\succ i l; x,y) & \dfn & \cond (; \eq ( u;x,y ) , 0, \equivfn (; \bit (\succ i u ; x ) , \bit (\succ i l ; y ))  )
27
\end{array}
28
\]
21 29
\end{definition}
22 30

  
23 31
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
CSL17/ph-macros.tex (revision 201)
43 43
\newcommand{\pair}[3]{\langle ; #1,#2 , #3 \rangle}
44 44
\newcommand{\eq}{\textsc{eq}}
45 45
\newcommand{\leqfn}{\textsc{leq}}
46
\newcommand{\bit}{\textsc{Bit}}
46
\newcommand{\bit}{\textsc{bit}}
47
\newcommand{\andfn}{\textsc{and}}
48
\newcommand{\orfn}{\textsc{or}}
49
\newcommand{\notfn}{\textsc{not}}
50
\newcommand{\equivfn}{\textsc{equiv}}
47 51

  
48 52
\newcommand{\zerobit}{\textsc{0bit}}
49 53
\newcommand{\onebit}{\textsc{1bit}}
CSL17/preliminaries.tex (revision 201)
137 137

  
138 138
%\nb{TODO: extend with $\mu$s.}
139 139

  
140
\anupam{Should add $+(;x,y)$ as a basic function (check satisfies polychecking lemma!), since otherwise not definable with safe input. Then define unary successor $\succ{} (;x)$ as $+(;x,\succ 1 0)$. }
140 141

  
142
\begin{example}
143
	[Some simple functions]
144
	\label{ex:simple-bc-fns}
145
	\todo{Boolean predicates $\notfn, \andfn, \orfn, \equivfn$ .}
146
	\todo{$\bit$}
147
	
148
	$\bit(l;x)$ returns the $\mode l$th bit of $x$.
149
	\end{example}
150

  
151

  
141 152
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.}
142 153

  
143 154
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, defined by using predicative minimization: 

Formats disponibles : Unified diff