Révision 199 CSL17/completeness.tex

completeness.tex (revision 199)
4 4

  
5 5
\begin{theorem}
6 6
	\label{thm:completeness}
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$.
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
8 8
\end{theorem}
9 9

  
10 10
The rest of this section is devoted to a proof of this theorem.
11 11
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
12 12

  
13
 The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional. Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. 
13
 The property is easily verified for the class of initial functions of  $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional. \patrick{Maybe we can refer here to Sect. \ref{sect:graphsbasicfunctions}.} Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. 
14 14
\paragraph*{Predicative minimisation}
15 15
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. 
16 16
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
......
175 175

  
176 176
\todo{elaborate}
177 177

  
178
\paragraph*{Other cases}
179
\todo{}
178
The proof of Thm \ref{thm:completeness} is thus completed.
180 179

  
181 180

  
182 181

  
......
200 199

  
201 200

  
202 201

  
203

  

Formats disponibles : Unified diff