Révision 199 CSL17/completeness.tex
completeness.tex (revision 199) | ||
---|---|---|
4 | 4 |
|
5 | 5 |
\begin{theorem} |
6 | 6 |
\label{thm:completeness} |
7 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$. |
|
7 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A_f(\vec u , \vec x , f(\vec u ; \vec x))$.
|
|
8 | 8 |
\end{theorem} |
9 | 9 |
|
10 | 10 |
The rest of this section is devoted to a proof of this theorem. |
11 | 11 |
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs. |
12 | 12 |
|
13 |
The property is easily verified for the class of initial functions of $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional. Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition. |
|
13 |
The property is easily verified for the class of initial functions of $\mubci{i-1}$: constant, projections, (binary) successors, predecessor, conditional. \patrick{Maybe we can refer here to Sect. \ref{sect:graphsbasicfunctions}.} Now let us examine the three constructions: predicative minimisation, predicative (safe) recursion and composition.
|
|
14 | 14 |
\paragraph*{Predicative minimisation} |
15 | 15 |
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. |
16 | 16 |
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma^{\safe}_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that, |
... | ... | |
175 | 175 |
|
176 | 176 |
\todo{elaborate} |
177 | 177 |
|
178 |
\paragraph*{Other cases} |
|
179 |
\todo{} |
|
178 |
The proof of Thm \ref{thm:completeness} is thus completed. |
|
180 | 179 |
|
181 | 180 |
|
182 | 181 |
|
... | ... | |
200 | 199 |
|
201 | 200 |
|
202 | 201 |
|
203 |
|
Formats disponibles : Unified diff