root / CSL17 / arithmetic.tex @ 199
Historique | Voir | Annoter | Télécharger (19,1 ko)
1 | 166 | adas | \section{An arithmetic for the polynomial hierarchy} |
---|---|---|---|
2 | 182 | pbaillot | %Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. |
3 | 183 | pbaillot | Our base language is defined by the set of functions (and constants) symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and the set of predicate symbols |
4 | 182 | pbaillot | $\{\leq, \safe, \normal \}$. |
5 | 182 | pbaillot | We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$. |
6 | 182 | pbaillot | We will also use as shorthand notations: |
7 | 182 | pbaillot | $$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$ |
8 | 182 | pbaillot | We call \textit{atomic formulas} formulas of the form $(s\leq t)$ or $(s=t)$. |
9 | 182 | pbaillot | As we are in classical logic, we will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of subformula of the form $\neg \neg A$. |
10 | 156 | adas | |
11 | 183 | pbaillot | In the sequel $\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$, |
12 | 182 | pbaillot | Now, let us describe the axioms we are considering.The $\basic$ axioms are as follows: |
13 | 171 | adas | \[ |
14 | 171 | adas | \begin{array}{l} |
15 | 171 | adas | \safe (0) \\ |
16 | 172 | adas | \forall x^\safe . \safe (\succ{} x) \\ |
17 | 172 | adas | \forall x^\safe . 0 \neq \succ{} (x) \\ |
18 | 172 | adas | \forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
19 | 176 | adas | \forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y )\\ |
20 | 176 | adas | \forall x^\safe, y^\safe . \safe(x+y)\\ |
21 | 176 | adas | \forall u^\normal, x^\safe . \safe(u\times x) \\ |
22 | 179 | pbaillot | \forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
23 | 183 | pbaillot | \forall u^\normal \safe(u) \\ |
24 | 183 | pbaillot | \forall u^\normal \safe(\hlf{u})\\ |
25 | 183 | pbaillot | \forall x^\safe \safe(|x|) |
26 | 171 | adas | \end{array} |
27 | 171 | adas | \] |
28 | 183 | pbaillot | \patrick{did I type writly the 2 last axioms?} |
29 | 183 | pbaillot | |
30 | 183 | pbaillot | and the list of axioms of Appendix \ref{appendix:arithmetic}, coming from \cite{Buss86book}. |
31 | 183 | pbaillot | |
32 | 172 | adas | \anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.} |
33 | 168 | adas | |
34 | 172 | adas | |
35 | 179 | pbaillot | Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$. |
36 | 179 | pbaillot | |
37 | 172 | adas | \begin{definition} |
38 | 172 | adas | [Derived functions and notations] |
39 | 172 | adas | We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol. |
40 | 172 | adas | We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively. |
41 | 176 | adas | |
42 | 176 | adas | Need $bit$, $\beta$ , $\pair{}{}{}$. |
43 | 172 | adas | \end{definition} |
44 | 172 | adas | |
45 | 157 | adas | (Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
46 | 157 | adas | |
47 | 157 | adas | Use base theory + sharply bounded quantifiers. |
48 | 157 | adas | |
49 | 157 | adas | |
50 | 157 | adas | \begin{definition} |
51 | 157 | adas | [Quantifier hierarchy] |
52 | 176 | adas | $\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded. |
53 | 176 | adas | We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers. |
54 | 176 | adas | We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers. |
55 | 157 | adas | \end{definition} |
56 | 157 | adas | |
57 | 168 | adas | |
58 | 168 | adas | \anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
59 | 177 | pbaillot | \begin{definition}\label{def:polynomialinduction} |
60 | 177 | pbaillot | [Polynomial induction] |
61 | 177 | pbaillot | The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, |
62 | 177 | pbaillot | \[ |
63 | 177 | pbaillot | A(0) |
64 | 177 | pbaillot | \cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) ) |
65 | 177 | pbaillot | \cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) |
66 | 177 | pbaillot | \cimp \forall x^{\normal} . A(x) |
67 | 177 | pbaillot | \] |
68 | 177 | pbaillot | for each formula $A(x)$. |
69 | 168 | adas | |
70 | 177 | pbaillot | For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. |
71 | 168 | adas | |
72 | 177 | pbaillot | %We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$. |
73 | 177 | pbaillot | \end{definition} |
74 | 177 | pbaillot | |
75 | 177 | pbaillot | |
76 | 178 | pbaillot | \begin{definition}\label{def:ariththeory} |
77 | 166 | adas | Define the theory $\arith^i$ consisting of the following axioms: |
78 | 166 | adas | \begin{itemize} |
79 | 166 | adas | \item $\basic$; |
80 | 166 | adas | \item $\cpind{\Sigma^\safe_i } $: |
81 | 166 | adas | \end{itemize} |
82 | 180 | pbaillot | and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$: |
83 | 168 | adas | \[ |
84 | 168 | adas | \dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
85 | 168 | adas | \] |
86 | 157 | adas | \end{definition} |
87 | 182 | pbaillot | \patrick{I think in the definition of $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$. Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)} |
88 | 182 | pbaillot | |
89 | 168 | adas | \anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
90 | 157 | adas | |
91 | 194 | adas | It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic: |
92 | 194 | adas | \begin{proposition} |
93 | 194 | adas | [Length induction] |
94 | 194 | adas | The axiom schema of formulae, |
95 | 194 | adas | \begin{equation} |
96 | 194 | adas | \label{eqn:lind} |
97 | 194 | adas | ( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|) |
98 | 194 | adas | \end{equation} |
99 | 194 | adas | for formulae $A \in \Sigma^\safe_i$ |
100 | 194 | adas | is equivalent to $\cpind{\Sigma^\safe_i}$. |
101 | 194 | adas | \end{proposition} |
102 | 194 | adas | \begin{proof} |
103 | 194 | adas | Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$. |
104 | 194 | adas | Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$. |
105 | 194 | adas | \end{proof} |
106 | 194 | adas | |
107 | 194 | adas | Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$. |
108 | 194 | adas | We will freely use this in place of polynomial induction whenever it is convenient. |
109 | 194 | adas | |
110 | 157 | adas | \begin{lemma} |
111 | 157 | adas | [Sharply bounded lemma] |
112 | 157 | adas | Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
113 | 157 | adas | Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
114 | 157 | adas | \end{lemma} |
115 | 157 | adas | \begin{proof} |
116 | 157 | adas | We give the $\forall$ case, the $\exists$ case being dual. |
117 | 157 | adas | The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
118 | 157 | adas | \[ |
119 | 157 | adas | \begin{array}{rcl} |
120 | 157 | adas | f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
121 | 157 | adas | f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
122 | 157 | adas | \end{array} |
123 | 157 | adas | \] |
124 | 157 | adas | \end{proof} |
125 | 157 | adas | |
126 | 157 | adas | Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
127 | 168 | adas | since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
128 | 168 | adas | |
129 | 168 | adas | |
130 | 199 | pbaillot | \subsection{Graphs of some basic functions}\label{sect:graphsbasicfunctions} |
131 | 168 | adas | Todo: $+1$, |
132 | 168 | adas | |
133 | 168 | adas | \subsection{Encoding sequences in the arithmetic} |
134 | 168 | adas | \todo{} |
135 | 168 | adas | |
136 | 168 | adas | \anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
137 | 168 | adas | |
138 | 168 | adas | |
139 | 168 | adas | \subsection{A sequent calculus presentation} |
140 | 168 | adas | |
141 | 174 | pbaillot | \begin{figure} |
142 | 174 | pbaillot | \[ |
143 | 174 | pbaillot | \small |
144 | 174 | pbaillot | \begin{array}{l} |
145 | 174 | pbaillot | \begin{array}{cccc} |
146 | 174 | pbaillot | %\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
147 | 174 | pbaillot | %& \vlinf{\id}{}{p \seqar p}{} |
148 | 174 | pbaillot | %& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
149 | 174 | pbaillot | %& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
150 | 180 | pbaillot | \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{} |
151 | 174 | pbaillot | & \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
152 | 174 | pbaillot | && |
153 | 174 | pbaillot | \\ |
154 | 174 | pbaillot | \noalign{\bigskip} |
155 | 174 | pbaillot | %\noalign{\bigskip} |
156 | 174 | pbaillot | \vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
157 | 174 | pbaillot | & |
158 | 174 | pbaillot | \vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
159 | 174 | pbaillot | & |
160 | 174 | pbaillot | %\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
161 | 174 | pbaillot | %\quad |
162 | 174 | pbaillot | \vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
163 | 174 | pbaillot | & |
164 | 174 | pbaillot | %\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
165 | 174 | pbaillot | %\quad |
166 | 174 | pbaillot | \vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
167 | 174 | pbaillot | \\ |
168 | 174 | pbaillot | \noalign{\bigskip} |
169 | 179 | pbaillot | |
170 | 174 | pbaillot | \vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
171 | 174 | pbaillot | & |
172 | 174 | pbaillot | |
173 | 179 | pbaillot | \vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
174 | 174 | pbaillot | & |
175 | 179 | pbaillot | & |
176 | 179 | pbaillot | %\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
177 | 179 | pbaillot | %& |
178 | 179 | pbaillot | % |
179 | 179 | pbaillot | %\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
180 | 174 | pbaillot | |
181 | 179 | pbaillot | |
182 | 174 | pbaillot | \\ |
183 | 174 | pbaillot | |
184 | 174 | pbaillot | \noalign{\bigskip} |
185 | 174 | pbaillot | %\text{Structural:} & & & \\ |
186 | 174 | pbaillot | %\noalign{\bigskip} |
187 | 174 | pbaillot | |
188 | 180 | pbaillot | %\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
189 | 180 | pbaillot | %& |
190 | 174 | pbaillot | \vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
191 | 180 | pbaillot | %& |
192 | 180 | pbaillot | %\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
193 | 174 | pbaillot | & |
194 | 180 | pbaillot | \vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
195 | 174 | pbaillot | & |
196 | 180 | pbaillot | & |
197 | 174 | pbaillot | \\ |
198 | 174 | pbaillot | \noalign{\bigskip} |
199 | 174 | pbaillot | \vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
200 | 174 | pbaillot | & |
201 | 174 | pbaillot | \vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
202 | 174 | pbaillot | & |
203 | 174 | pbaillot | \vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
204 | 174 | pbaillot | & |
205 | 174 | pbaillot | \vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
206 | 174 | pbaillot | %\noalign{\bigskip} |
207 | 174 | pbaillot | % \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
208 | 174 | pbaillot | \end{array} |
209 | 174 | pbaillot | \end{array} |
210 | 174 | pbaillot | \] |
211 | 174 | pbaillot | \caption{Sequent calculus rules}\label{fig:sequentcalculus} |
212 | 174 | pbaillot | \end{figure} |
213 | 174 | pbaillot | We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus}, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
214 | 174 | pbaillot | |
215 | 174 | pbaillot | We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows, |
216 | 174 | pbaillot | \[ |
217 | 174 | pbaillot | \begin{array}{cc} |
218 | 174 | pbaillot | \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} } |
219 | 174 | pbaillot | \end{array} |
220 | 174 | pbaillot | \] |
221 | 174 | pbaillot | where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology: |
222 | 174 | pbaillot | \begin{enumerate} |
223 | 174 | pbaillot | \item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of |
224 | 174 | pbaillot | $ \Gamma, \Pi$ are called \textit{context formulas}. |
225 | 174 | pbaillot | \item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$. |
226 | 174 | pbaillot | \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain). |
227 | 174 | pbaillot | \end{enumerate} |
228 | 174 | pbaillot | |
229 | 174 | pbaillot | %The distinction between modal and nonmodal formulae in $(R)$ induces condition 1 |
230 | 174 | pbaillot | Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. |
231 | 174 | pbaillot | |
232 | 177 | pbaillot | %\begin{definition} |
233 | 177 | pbaillot | %[Polynomial induction] |
234 | 177 | pbaillot | %The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, |
235 | 177 | pbaillot | %\[ |
236 | 177 | pbaillot | %A(0) |
237 | 177 | pbaillot | %\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) ) |
238 | 177 | pbaillot | %\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) |
239 | 177 | pbaillot | %\cimp \forall x^{\normal} . A(x) |
240 | 177 | pbaillot | %\] |
241 | 177 | pbaillot | %for each formula $A(x)$. |
242 | 177 | pbaillot | % |
243 | 177 | pbaillot | %For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. |
244 | 177 | pbaillot | % |
245 | 177 | pbaillot | %We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$. |
246 | 177 | pbaillot | %\end{definition} |
247 | 174 | pbaillot | |
248 | 177 | pbaillot | As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}. |
249 | 177 | pbaillot | |
250 | 177 | pbaillot | Actually $\pind$ is equivalent to the following rule: |
251 | 177 | pbaillot | \begin{equation} |
252 | 177 | pbaillot | \label{eqn:ind-rule} |
253 | 177 | pbaillot | \small |
254 | 177 | pbaillot | \vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta } |
255 | 177 | pbaillot | \end{equation} |
256 | 177 | pbaillot | where $I=2$ and in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule. |
257 | 177 | pbaillot | |
258 | 178 | pbaillot | Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule: |
259 | 177 | pbaillot | \[ |
260 | 177 | pbaillot | \begin{array}{cc} |
261 | 179 | pbaillot | \vlinf{\rais}{}{ \normal(t_1), \dots, \normal(t_k) \seqar \exists y^\normal . A }{ \normal(t_1), \dots, \normal(t_k) \seqar \exists y^\safe . A} |
262 | 177 | pbaillot | \end{array} |
263 | 177 | pbaillot | \] |
264 | 179 | pbaillot | |
265 | 179 | pbaillot | %\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general: |
266 | 179 | pbaillot | %\[ |
267 | 179 | pbaillot | % \begin{array}{cc} |
268 | 179 | pbaillot | % \vlinf{\rais}{}{ \normal(t_1), \dots, \normal(t_k) \seqar \normal(t) }{ \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)} |
269 | 179 | pbaillot | %\end{array} |
270 | 179 | pbaillot | %\] |
271 | 179 | pbaillot | %} |
272 | 179 | pbaillot | |
273 | 179 | pbaillot | The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$: |
274 | 179 | pbaillot | \[ |
275 | 179 | pbaillot | \small |
276 | 179 | pbaillot | \begin{array}{l} |
277 | 179 | pbaillot | \begin{array}{cccc} |
278 | 179 | pbaillot | \vlinf{}{}{\seqar \safe (0)}{}& |
279 | 179 | pbaillot | \vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}& |
280 | 179 | pbaillot | \vlinf{}{}{ \safe (t) \seqar 0 \neq \succ{} t}{} & |
281 | 179 | pbaillot | \vlinf{}{}{\safe (s) , \safe (t) , \succ{} s = \succ{} t\seqar s = t }{}\\ |
282 | 179 | pbaillot | \end{array} |
283 | 179 | pbaillot | \\ |
284 | 179 | pbaillot | \vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y }{} |
285 | 179 | pbaillot | \qquad |
286 | 179 | pbaillot | \vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\ |
287 | 179 | pbaillot | \vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t) }{} |
288 | 179 | pbaillot | \qquad |
289 | 179 | pbaillot | \vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t) }{}\\ |
290 | 180 | pbaillot | \vlinf{}{}{\normal(t) \seqar \safe(t) }{} |
291 | 179 | pbaillot | \end{array} |
292 | 179 | pbaillot | \] |
293 | 179 | pbaillot | |
294 | 179 | pbaillot | The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$, $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules. |
295 | 179 | pbaillot | |
296 | 179 | pbaillot | \begin{lemma} |
297 | 179 | pbaillot | For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. |
298 | 179 | pbaillot | \end{lemma} |
299 | 179 | pbaillot | |
300 | 168 | adas | \subsection{Free-cut free normal form of proofs} |
301 | 174 | pbaillot | \todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
302 | 175 | pbaillot | |
303 | 174 | pbaillot | Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality. |
304 | 174 | pbaillot | \begin{definition}\label{def:anchoredcut} |
305 | 174 | pbaillot | We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows: |
306 | 174 | pbaillot | \begin{itemize} |
307 | 174 | pbaillot | \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or |
308 | 174 | pbaillot | (ii) the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical. |
309 | 174 | pbaillot | \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step. |
310 | 174 | pbaillot | \end{itemize} |
311 | 174 | pbaillot | A cut which is not anchored will also be called a \textit{free-cut}. |
312 | 174 | pbaillot | \end{definition} |
313 | 174 | pbaillot | As a consequence of this definition, an anchored cut on a formula $A$ has the following properties: |
314 | 174 | pbaillot | \begin{itemize} |
315 | 174 | pbaillot | \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context. |
316 | 174 | pbaillot | \item The other premise is either of the same form or is a logical step with principal formula $A$. |
317 | 174 | pbaillot | \end{itemize} |
318 | 174 | pbaillot | |
319 | 174 | pbaillot | Now we have (see \cite{Takeuti87}): |
320 | 174 | pbaillot | \begin{theorem} |
321 | 179 | pbaillot | [Free-cut elimination]\label{thm:freecutelimination} |
322 | 174 | pbaillot | \label{thm:free-cut-elim} |
323 | 174 | pbaillot | Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
324 | 175 | pbaillot | \end{theorem} |
325 | 179 | pbaillot | Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs. |
326 | 179 | pbaillot | |
327 | 179 | pbaillot | Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are. |
328 | 179 | pbaillot | |
329 | 179 | pbaillot | \begin{lemma}\label{lem:welltyped} |
330 | 181 | pbaillot | If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$ such that |
331 | 181 | pbaillot | the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof. |
332 | 179 | pbaillot | \end{lemma} |
333 | 181 | pbaillot | \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.} |
334 | 181 | pbaillot | \begin{proof}[Proof sketch] |
335 | 181 | pbaillot | First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed. |
336 | 181 | pbaillot | |
337 | 181 | pbaillot | Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms |
338 | 181 | pbaillot | $\forall^{\safe}$, $\exists^{\safe}$, $\forall^{\normal}$, $\exists^{\normal}$, and for the last two ones they are sharply bounded. |
339 | 181 | pbaillot | |
340 | 181 | pbaillot | Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises. For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof, and the premises of the rule have become well-typed. |
341 | 181 | pbaillot | \end{proof} |
342 | 179 | pbaillot | |
343 | 182 | pbaillot | \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.} |
344 | 179 | pbaillot | |
345 | 179 | pbaillot | \begin{theorem} |
346 | 179 | pbaillot | Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent |
347 | 179 | pbaillot | $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying: |
348 | 179 | pbaillot | \begin{enumerate} |
349 | 179 | pbaillot | \item $\pi$ only contains $\Sigma^\safe_{i}$ formulas, |
350 | 179 | pbaillot | \item $\pi$ is a well-typed and integer-positive proof. |
351 | 179 | pbaillot | \end{enumerate} |
352 | 179 | pbaillot | \end{theorem} |