Révision 197

CSL17/ph-macros.tex (revision 197)
48 48
\newcommand{\zerobit}{\textsc{0bit}}
49 49
\newcommand{\onebit}{\textsc{1bit}}
50 50
\newcommand{\pref}{\textsc{pref}}
51
\newcommand{\addtosequence}{\textsc{addtosequ}}
51 52

  
52 53
\newcommand{\safe}{{N_0}}
53 54
\newcommand{\normal}{{N_1}}
CSL17/completeness.tex (revision 197)
4 4

  
5 5
\begin{theorem}
6 6
	\label{thm:completeness}
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$.
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall^{\normal} \vec u, \forall^{\safe} \vec x, \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$.
8 8
\end{theorem}
9 9

  
10 10
The rest of this section is devoted to a proof of this theorem.
11
We proceed by structural induction on a $\mubc{i-1} $ program, dealing with each case in the proceeding paragraphs.
11
We proceed by structural induction on a $\mubc^{i-1} $ program, dealing with each case in the proceeding paragraphs.
12 12

  
13 13
\paragraph*{Predicative minimisation}
14 14
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$. 
......
75 75
\begin{itemize}
76 76
   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
77 77
   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
78
   \item $\addtosequence(w,y,w')$. "$w'$ represents the sequence obtained by adding $y$ at the end of the sequence represented by $w$". Here we are referring to sequences which can be decoded with predicate $\beta$.
78 79
\end{itemize}}
79 80
Now suppose that $f$ is defined by PRN:
80 81
\[
......
94 95
& 
95 96
%Seq(z) \cand 
96 97
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
97
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
98
%\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
98 99
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
99 100
\end{array}
100 101
\right)
101 102
\]
103
where 
104
\[
105
B (u , \vec u ; \vec x , y_k , y_{k+1}) = \left(
106
\begin{array}{ll}
107
& \zerobit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_0}(v,\vec u ; \vec x, y_k, y_{k+1}) )\\
108
\cand &  \onebit(u,k+1) \cimp  \exists v .(\pref(k,u,v)  \cand A_{h_1}(v,\vec u ; \vec x, y_k, y_{k+1}) )
109
\end{array}
110
\right)
111
\]
102 112

  
103
%where 
104
%
105
%\[
106
%B (u , \vec u ; \vec x , y_k , y_{k+1}) =
107
%\begin{array}{ll}
108
%&  \\
109
%\cand & 
110
%
111
%\end{array}
112
%
113
%\]
114 113
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
115 114

  
116 115
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
......
118 117
\[
119 118
\exists y^\safe . A_f (u , \vec u ; \vec x , y) 
120 119
\quad \seqar \quad
121
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , y)
120
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , z)
122 121
\]
123 122

  
123
So let us assume $\exists y^\safe . A_f (u , \vec u ; \vec x , y) $. Then there exists $w$ such that $\safe(w)$ and 
124
 $A_f (u , \vec u ; \vec x , w) $.
125
 
126
 We know that there exists a $z$ such that $A_{h_i}(u,\vec u ; \vec x, y, z)$. Let then $w'$ be such that
127
 $\addtosequence(w,z,w')$. Observe also that we have $\pref(|u|,s_i u,u)$
128
 
129
 So we have, for $k=|u|$:
130
 
131
 $$  \beta (k, w', y) \cand \beta (k+1 ,w', z)  \cand B (u , \vec u ; \vec x , y , z).$$
132
  
133
  and we can conclude that
134
   \[
135
\exists w'^\safe . \left(
136
\begin{array}{ll}
137
& 
138
%Seq(z) \cand 
139
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w' , y_0) ) \cand \beta(|u|+1, w',z ) \\
140
\cand & \forall k < |u|+1 . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
141
\end{array}
142
\right)
143
\]
144
So $\exists z^{\safe} . A_f (s_i u, \vec u ; \vec x , z)$ has been proven. So by induction we have proven $\forall^{\normal} u,  
145
\forall^{\normal} \vec u, \exists^{\safe} y. A_f (u ,\vec u ; \vec x , y)$. Moreover one can also check the unicity of $y$, and so we have proved the required formula. 
146

  
124 147
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
125 148

  
126 149
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}

Formats disponibles : Unified diff