Révision 196 CSL17/completeness.tex

completeness.tex (revision 196)
94 94
& 
95 95
%Seq(z) \cand 
96 96
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
97
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )
97
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
98 98
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
99 99
\end{array}
100 100
\right)
101 101
\]
102 102

  
103
where 
103
%where 
104
%
105
%\[
106
%B (u , \vec u ; \vec x , y_k , y_{k+1}) =
107
%\begin{array}{ll}
108
%&  \\
109
%\cand & 
110
%
111
%\end{array}
112
%
113
%\]
114
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
104 115

  
105
\[
106
B (u , \vec u ; \vec x , y_k , y_{k+1}) =
107
\begin{array}{ll}
108
&  \\
109
\cand & 
110

  
111
\end{array}
112

  
113
\]
114
which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
115

  
116 116
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
117 117
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
118 118
\[

Formats disponibles : Unified diff