Révision 196
CSL17/completeness.tex (revision 196) | ||
---|---|---|
94 | 94 |
& |
95 | 95 |
%Seq(z) \cand |
96 | 96 |
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\ |
97 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
|
97 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )\\
|
|
98 | 98 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
99 | 99 |
\end{array} |
100 | 100 |
\right) |
101 | 101 |
\] |
102 | 102 |
|
103 |
where |
|
103 |
%where |
|
104 |
% |
|
105 |
%\[ |
|
106 |
%B (u , \vec u ; \vec x , y_k , y_{k+1}) = |
|
107 |
%\begin{array}{ll} |
|
108 |
%& \\ |
|
109 |
%\cand & |
|
110 |
% |
|
111 |
%\end{array} |
|
112 |
% |
|
113 |
%\] |
|
114 |
%which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$. |
|
104 | 115 |
|
105 |
\[ |
|
106 |
B (u , \vec u ; \vec x , y_k , y_{k+1}) = |
|
107 |
\begin{array}{ll} |
|
108 |
& \\ |
|
109 |
\cand & |
|
110 |
|
|
111 |
\end{array} |
|
112 |
|
|
113 |
\] |
|
114 |
which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$. |
|
115 |
|
|
116 | 116 |
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$. |
117 | 117 |
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show: |
118 | 118 |
\[ |
Formats disponibles : Unified diff