Statistiques
| Révision :

root / CSL17 / soundness.tex @ 195

Historique | Voir | Annoter | Télécharger (3,91 ko)

1
\section{Soundness}
2
\label{sect:soundness}
3

    
4
The main result of this section is the following:
5

    
6
\begin{theorem}
7
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
8
\end{theorem}
9

    
10

    
11

    
12
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. 
13
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}.
14

    
15
\begin{definition}
16
[Length bounded basic functions]
17
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
18
\[
19
x \mode l = y \mode l
20
\]
21
\end{definition}
22

    
23
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
24

    
25
Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
26

    
27
\begin{definition}
28
	[Length bounded characteristic functions]
29
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows.
30
%	If $A$ is a $\Pi_{i}$ formula then:
31
	\[
32
	\begin{array}{rcl}
33
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\
34
	\smallskip
35
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\
36
	\smallskip
37
	\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
38
	\smallskip
39
	\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
40
	\smallskip
41
	\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
42
	\smallskip
43
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x,  w) & \dfn & \begin{cases}
44
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x, w) = 1 \\
45
	0 & \text{otherwise} 
46
	\end{cases} \\
47
	\smallskip
48
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
49
	\begin{cases}
50
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
51
	1 & \text{otherwise}
52
	\end{cases}
53
	\end{array}
54
	\]
55
\end{definition}
56

    
57

    
58
\begin{proposition}
59
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
60
\end{proposition}
61

    
62
\begin{definition}
63
	[Length bounded witness function]
64
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.
65
	\[
66
	\begin{array}{rcl}
67
	\Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
68
	\smallskip
69
	\Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
70
	\smallskip
71
	\Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
72
	\smallskip
73
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
74
	\\
75
	\smallskip
76
	\Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
77
	\forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
78
	\end{array}
79
	\]
80
\end{definition}
81

    
82
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
83

    
84
\anupam{sharply bounded case obtained by sharply bounded lemma}