Révision 195

CSL17/preliminaries.tex (revision 195)
150 150

  
151 151
$f(\vec u; \vec x):= \begin{cases}
152 152
 s_1(\mu y.h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
153
 & \mbox{ otherwise,}
153
0  & \mbox{ otherwise,}
154 154
\end{cases}
155 155
$
156 156

  
CSL17/ph-macros.tex (revision 195)
45 45
\newcommand{\leqfn}{\textsc{leq}}
46 46
\newcommand{\bit}{\textsc{Bit}}
47 47

  
48
\newcommand{\zerobit}{\textsc{0bit}}
49
\newcommand{\onebit}{\textsc{1bit}}
50
\newcommand{\pref}{\textsc{pref}}
48 51

  
49 52
\newcommand{\safe}{{N_0}}
50 53
\newcommand{\normal}{{N_1}}
CSL17/completeness.tex (revision 195)
71 71
		\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
72 72
	\end{itemize}
73 73
	}
74

  
74
\patrick{I also assume access to the following predicates:
75
\begin{itemize}
76
   \item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)"
77
   \item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" 
78
\end{itemize}}
75 79
Now suppose that $f$ is defined by PRN:
76 80
\[
77 81
\begin{array}{rcl}
......
91 95
%Seq(z) \cand 
92 96
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
93 97
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )
98
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) )
94 99
\end{array}
95 100
\right)
96 101
\]
102

  
103
where 
104

  
105
\[
106
B (u , \vec u ; \vec x , y_k , y_{k+1}) =
107
\begin{array}{ll}
108
&  \\
109
\cand & 
110

  
111
\end{array}
112

  
113
\]
97 114
which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
98 115

  
99 116
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.

Formats disponibles : Unified diff