Révision 195
CSL17/preliminaries.tex (revision 195) | ||
---|---|---|
150 | 150 |
|
151 | 151 |
$f(\vec u; \vec x):= \begin{cases} |
152 | 152 |
s_1(\mu y.h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
153 |
& \mbox{ otherwise,} |
|
153 |
0 & \mbox{ otherwise,}
|
|
154 | 154 |
\end{cases} |
155 | 155 |
$ |
156 | 156 |
|
CSL17/ph-macros.tex (revision 195) | ||
---|---|---|
45 | 45 |
\newcommand{\leqfn}{\textsc{leq}} |
46 | 46 |
\newcommand{\bit}{\textsc{Bit}} |
47 | 47 |
|
48 |
\newcommand{\zerobit}{\textsc{0bit}} |
|
49 |
\newcommand{\onebit}{\textsc{1bit}} |
|
50 |
\newcommand{\pref}{\textsc{pref}} |
|
48 | 51 |
|
49 | 52 |
\newcommand{\safe}{{N_0}} |
50 | 53 |
\newcommand{\normal}{{N_1}} |
CSL17/completeness.tex (revision 195) | ||
---|---|---|
71 | 71 |
\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.'' |
72 | 72 |
\end{itemize} |
73 | 73 |
} |
74 |
|
|
74 |
\patrick{I also assume access to the following predicates: |
|
75 |
\begin{itemize} |
|
76 |
\item $\zerobit (u,k)$ (resp. $\onebit(u,k)$). " The $k$th bit of $u$ is 0 (resp. 1)" |
|
77 |
\item $\pref(k,x,y)$. "The prefix of $x$ (as a binary string) of length $k$ is $y$" |
|
78 |
\end{itemize}} |
|
75 | 79 |
Now suppose that $f$ is defined by PRN: |
76 | 80 |
\[ |
77 | 81 |
\begin{array}{rcl} |
... | ... | |
91 | 95 |
%Seq(z) \cand |
92 | 96 |
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\ |
93 | 97 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
98 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1}) \cand B (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
|
94 | 99 |
\end{array} |
95 | 100 |
\right) |
96 | 101 |
\] |
102 |
|
|
103 |
where |
|
104 |
|
|
105 |
\[ |
|
106 |
B (u , \vec u ; \vec x , y_k , y_{k+1}) = |
|
107 |
\begin{array}{ll} |
|
108 |
& \\ |
|
109 |
\cand & |
|
110 |
|
|
111 |
\end{array} |
|
112 |
|
|
113 |
\] |
|
97 | 114 |
which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$. |
98 | 115 |
|
99 | 116 |
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$. |
Formats disponibles : Unified diff