Révision 194 CSL17/sequence-coding.tex
sequence-coding.tex (revision 194) | ||
---|---|---|
22 | 22 |
\begin{definition} |
23 | 23 |
[Sequence (de)coding] |
24 | 24 |
We define the function $\beta\bit (i,j;x,b)$, intuitively meaning ``the $j$th bit of the $i$th element of $x$ is $b$'' as $\bit \left( \frac{1}{2} (i+j)(i+j+1) +i ; x , b \right)$. |
25 |
\end{definition} |
|
25 |
|
|
26 |
We now define \emph{length-bounded $\beta$ function} $\beta(i,l;x,b)$ as: |
|
27 |
\[ |
|
28 |
\forall j \leq l . \bigvee\limits_{b=0,1} ( \beta\bit (i,j;x,b) \cand \bit (j;y,b) ) |
|
29 |
\] |
|
30 |
\end{definition} |
|
31 |
|
|
32 |
Our aim is to construct sequences formed from old sequences and new elements. |
|
33 |
Namely we want the following result, which says that, given a number $x$ and a sequence $y$, there is another sequence $z$ formed from prepending $x$ to $y$: |
|
34 |
\begin{proposition} |
|
35 |
[In $\arith$] |
|
36 |
$$ |
|
37 |
\forall x^\safe, y^\safe. \exists z^\safe . \forall i^\normal\leq k, j^\normal\leq l . |
|
38 |
\left( |
|
39 |
\begin{array}{rl} |
|
40 |
& \bigwedge\limits_{b=0,1} (\bit(j;x,b) \cimp \beta (0,j;z,b) ) \\ |
|
41 |
\cand & i>0 \cimp \bigwedge\limits_{b=0,1} (\beta(i-1, j;y,b) \cimp \beta(i,j;z,b) ) |
|
42 |
\end{array} |
|
43 |
\right) |
|
44 |
$$ |
|
45 |
\end{proposition} |
|
46 |
|
|
47 |
To prove this we will need two lemmata. |
|
48 |
The first says we can construct a sequence whose $0$th element is $x$ and every other element is $0$. |
|
49 |
|
|
50 |
\begin{lemma} |
|
51 |
[In $\arith$] |
|
52 |
$\forall l . \exists z . (\beta (0,|l| ; z , x) \cand \forall i \leq |k| . \beta(i,|l|;z,0) )$. |
|
53 |
\end{lemma} |
|
54 |
\begin{proof} |
|
55 |
Length induction on $l$. |
|
56 |
\end{proof} |
|
57 |
|
|
58 |
The second says we can prepend $0$ to any sequence: |
|
59 |
|
|
60 |
\begin{lemma} |
|
61 |
[In $\arith$] |
|
62 |
$\forall x . \exists z . ( \beta(0,|l|;z,0) \cand \forall i\in (0,|k|] . \exists y . (\beta (i, |l| ; z,y) \cand \beta(i-1,|l|;x,y) ) )$ |
|
63 |
\end{lemma} |
|
64 |
\begin{proof} |
|
65 |
Length induction on $l$. |
|
66 |
\end{proof} |
Formats disponibles : Unified diff