Révision 194

CSL17/arithmetic.tex (revision 194)
88 88

  
89 89
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
90 90

  
91
It is often useful for us to work with \emph{length-induction}, which is equivalent to polynomial induction and well known from bounded arithmetic:
92
\begin{proposition}
93
	[Length induction]
94
	The axiom schema of formulae,
95
\begin{equation}
96
\label{eqn:lind}
97
	( A(0) \cand \forall x^\normal . (A(x) \cimp A(\succ{} x)) ) \cimp \forall x^\safe. A(|x|)
98
\end{equation}
99
	for formulae $A \in \Sigma^\safe_i$
100
	is equivalent to $\cpind{\Sigma^\safe_i}$.
101
\end{proposition}
102
\begin{proof}
103
	Suppose we have $A(0)$ and $A(a) \cimp A(\succ{} a)$ for each $a \in \normal$.
104
	Then, by $\basic$, we have that $A(|a|) \cimp A(|2a|)$ and $A(|a|) \cimp A(|2a+1|)$ for each $a \in \normal$, whence we may conclude $\forall x. A(|x|)$ by polynomial induction on $A(|x|)$.
105
\end{proof}
106

  
107
Let us refer to the axiom schema in \eqref{eqn:lind} as $\clind{\mathcal C}$, when $A \in \mathcal C$.
108
We will freely use this in place of polynomial induction whenever it is convenient.
109

  
91 110
\begin{lemma}
92 111
[Sharply bounded lemma]
93 112
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
CSL17/ph-macros.tex (revision 194)
18 18

  
19 19
\newcommand{\ind}{\mathit{IND}}
20 20
\newcommand{\pind}{\mathit{PIND}}
21
\newcommand{\lind}{\mathit{LIND}}
21 22
\newcommand{\cind}[1]{#1\text{-}\ind}
22 23
\newcommand{\cpind}[1]{#1\text{-}\pind}
24
\newcommand{\clind}[1]{#1\text{-}\lind}
23 25
\renewcommand{\min}{\mathit{MIN}}
24 26
\newcommand{\cmin}[1]{#1\text{-}\min}
25 27

  
CSL17/sequence-coding.tex (revision 194)
22 22
\begin{definition}
23 23
[Sequence (de)coding]
24 24
We define the function $\beta\bit (i,j;x,b)$, intuitively meaning ``the $j$th bit of the $i$th element of $x$ is $b$'' as $\bit \left( \frac{1}{2} (i+j)(i+j+1) +i ; x , b \right)$.	
25
\end{definition}
25

  
26
We now define \emph{length-bounded $\beta$ function} $\beta(i,l;x,b)$ as:
27
\[
28
\forall j \leq l . \bigvee\limits_{b=0,1} ( \beta\bit (i,j;x,b) \cand \bit (j;y,b) )
29
\]
30
\end{definition}
31

  
32
Our aim is to construct sequences formed from old sequences and new elements.
33
Namely we want the following result, which says that, given a number $x$ and a sequence $y$, there is another sequence $z$ formed from prepending $x$ to $y$:
34
\begin{proposition}
35
	[In $\arith$]
36
	$$
37
	\forall x^\safe, y^\safe. \exists z^\safe . \forall i^\normal\leq k, j^\normal\leq l . 
38
	\left(
39
	\begin{array}{rl}
40
	& \bigwedge\limits_{b=0,1} (\bit(j;x,b) \cimp \beta (0,j;z,b) ) \\
41
	\cand & i>0 \cimp \bigwedge\limits_{b=0,1} (\beta(i-1, j;y,b) \cimp \beta(i,j;z,b) )
42
	\end{array}
43
	\right)
44
	$$
45
\end{proposition}
46

  
47
To prove this we will need two lemmata.
48
The first says we can construct a sequence whose $0$th element is $x$ and every other element is $0$.
49

  
50
\begin{lemma}
51
[In $\arith$]
52
$\forall l . \exists z . (\beta (0,|l| ; z , x) \cand \forall i \leq |k| . \beta(i,|l|;z,0) )$.	
53
\end{lemma}
54
\begin{proof}
55
	Length induction on $l$.
56
\end{proof}
57

  
58
The second says we can prepend $0$ to any sequence:
59

  
60
\begin{lemma}
61
	[In $\arith$]
62
	$\forall x . \exists z . ( \beta(0,|l|;z,0) \cand \forall i\in (0,|k|] . \exists y . (\beta (i, |l| ; z,y) \cand \beta(i-1,|l|;x,y) )   )$
63
\end{lemma}
64
\begin{proof}
65
	Length induction on $l$.
66
\end{proof}

Formats disponibles : Unified diff