root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 191
Historique | Voir | Annoter | Télécharger (15,97 ko)
1 |
|
---|---|
2 |
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper} |
3 |
\documentclass{beamer} |
4 |
\usepackage{amsfonts,latexsym,amssymb, amsmath} |
5 |
\usepackage{stmaryrd} |
6 |
\usepackage{graphicx} |
7 |
\usepackage{eepic} |
8 |
\usepackage[dvips]{epsfig} |
9 |
%\usepackage{psfig} |
10 |
%\input head.tex |
11 |
\usepackage{proof,bussproofs} |
12 |
%\usepackage{ desseins_s} |
13 |
|
14 |
|
15 |
%\usepackage{microtype}%if unwanted, comment out or use option "draft" |
16 |
%\usepackage[dvipsnames]{xcolor} |
17 |
|
18 |
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory |
19 |
|
20 |
%\bibliographystyle{plainurl}% the recommended bibstyle |
21 |
|
22 |
%\usepackage[lutzsyntax]{virginialake} |
23 |
\input{ph-macros} |
24 |
|
25 |
|
26 |
|
27 |
\setbeamercolor{block title}{bg=blue!10} |
28 |
\setbeamercolor{block body}{bg=blue!10} |
29 |
\definecolor{monred}{HTML}{9D0909} |
30 |
%\definecolor{monbleu}{RVB}{0,0,1} |
31 |
\def\red#1{\color{red}{#1}} |
32 |
\def\blue#1{\color{blue}{#1}} |
33 |
\def\green#1{\color{green}{#1}} |
34 |
\def\black{} |
35 |
\def\BA#1{\color{red}{#1}} |
36 |
\def\ICC#1{\color{blue}{#1}} |
37 |
|
38 |
|
39 |
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%% |
40 |
%\def\un#1{\underline{#1}} |
41 |
%\def\point#1{{\bf #1.}} |
42 |
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}} |
43 |
%\newcommand{\etq}[1]{\mbox{{\bf #1}}} |
44 |
%\newcommand{\Rulone}[1]{% |
45 |
% \begin{center} |
46 |
% \makebox[12cm]{\hspace*{\fill} |
47 |
% \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill} |
48 |
% } |
49 |
% \end{center} |
50 |
% } |
51 |
% |
52 |
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}} |
53 |
% |
54 |
%\newcommand{\Rultwo}[2]{% |
55 |
% \begin{center} |
56 |
% \makebox[12cm]{ |
57 |
% \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt} |
58 |
% \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}} |
59 |
% } |
60 |
% \end{center} |
61 |
% } |
62 |
%\newcounter{ex} |
63 |
%%\newtheorem{example}[ex]{Example} |
64 |
% |
65 |
% |
66 |
%\def\para#1{\paragraph{#1}} |
67 |
%\newtheorem{theo}{Theorem} |
68 |
%\newtheorem{de}{Definition} |
69 |
%\newtheorem{prop}[theo]{Proposition} |
70 |
%\newtheorem{lem}[theo]{Lemma} |
71 |
%\newtheorem{Cor}[theo]{Corollary} |
72 |
%\newtheorem{remark}[theo]{Remark} |
73 |
%\newcounter{pb} |
74 |
%\newtheorem{problem}[pb]{Problem} |
75 |
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$} |
76 |
|
77 |
%--------------------- |
78 |
%% Definition of new colors |
79 |
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8} |
80 |
% |
81 |
%\newrgbcolor{LightBlue}{0.68 0.85 0.9} |
82 |
%\newrgbcolor{Dgreen}{0 0.6 0.4} |
83 |
%%\newrgbcolor{DBlue}{0 0 0.5} |
84 |
%\newrgbcolor{DBlue}{0 0 0.6} |
85 |
%\newrgbcolor{Dblue}{0 0 0.6} |
86 |
%%---------------------- |
87 |
%%% MORE Color definitions |
88 |
%\newrgbcolor{DarkGray}{.284 .210 .410} |
89 |
%\newrgbcolor{Violet}{.2 .2 .9} |
90 |
|
91 |
%--------------------- |
92 |
|
93 |
\mode<presentation> |
94 |
{ |
95 |
\usetheme{Warsaw} |
96 |
% or ... |
97 |
|
98 |
\setbeamercovered{transparent} |
99 |
% or whatever (possibly just delete it) |
100 |
} |
101 |
|
102 |
|
103 |
\title{Towards an Unbounded Implicit Arithmetic for\\ |
104 |
the Polynomial Hierarchy |
105 |
} |
106 |
|
107 |
\author{Patrick Baillot and Anupam Das} |
108 |
\institute{CNRS / ENS Lyon\\ |
109 |
DICE-FOPARA 2017 workshop, Uppsala} |
110 |
|
111 |
|
112 |
\begin{document} |
113 |
\maketitle |
114 |
|
115 |
|
116 |
\begin{frame} |
117 |
\frametitle{Introduction} |
118 |
|
119 |
2 cousin approaches to logical characterization of complexity classes: |
120 |
|
121 |
\bigskip |
122 |
|
123 |
\begin{tabular}{l|l} |
124 |
\BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity (91 --)}\\ |
125 |
& \ICC{(ICC)}\\ |
126 |
\hline |
127 |
&\\ |
128 |
% & function algebras\\ |
129 |
% & types/proofs-as-programs\\ |
130 |
arithmetic & arithmetics / logics\\ |
131 |
& \\ |
132 |
large variety of & resource-free characterizations of\\ |
133 |
complexity classes & complexity classes (e.g. ramification)\\ |
134 |
&\\ |
135 |
correspondence with & extensions to programming languages\\ |
136 |
\textit{proof-complexity} & |
137 |
\end{tabular} |
138 |
\end{frame} |
139 |
|
140 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
141 |
|
142 |
\begin{frame} |
143 |
\frametitle{Introduction} |
144 |
|
145 |
$$ \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$ |
146 |
|
147 |
\bigskip |
148 |
|
149 |
\begin{tabular}{l|l} |
150 |
\BA{Bounded arithmetic} \qquad \qquad & \ICC{Implicit computational complexity}\\ |
151 |
\hline |
152 |
&\\ |
153 |
Buss ($S_2$): & Leivant (intrinsic theories): \\ |
154 |
$\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\ |
155 |
&\\ |
156 |
FP, FPH & FP |
157 |
\end{tabular} |
158 |
\end{frame} |
159 |
|
160 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
161 |
|
162 |
\begin{frame} |
163 |
\frametitle{{A current limitation of ICC logics}} |
164 |
|
165 |
\begin{itemize} |
166 |
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}} |
167 |
\item in particular, {\ICC{ICC logics}} not so satisfactory for non-deterministic classes |
168 |
|
169 |
e.g. NP, PH (polynomial hierarchy) \dots |
170 |
|
171 |
\end{itemize} |
172 |
\end{frame} |
173 |
|
174 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
175 |
|
176 |
\begin{frame} |
177 |
\frametitle{Recap : the polynomial hierarchy} |
178 |
|
179 |
\begin{itemize} |
180 |
\item NP: polynomially checkable with polysize witness |
181 |
|
182 |
$NP=\Sigma_1^P$ example: $k$-CLIQUE |
183 |
|
184 |
$$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$ |
185 |
\item $\Sigma_2^P$ example: $k$-MAXCLIQUE |
186 |
\end{itemize} |
187 |
$$ \begin{array}{l} |
188 |
\exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\ |
189 |
(|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (|s_2|\geq k+1 \rightarrow \neg \mbox{CLIQUE}(s_2,x)) ) |
190 |
\end{array} |
191 |
$$ |
192 |
\begin{itemize} |
193 |
\item $\Sigma_i^P$: |
194 |
$$ |
195 |
\exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots Q^{|s_i|\leq P_i(x) } s_i, |
196 |
\mbox{Pred}(\vec s, x)$$ |
197 |
for Pred a Ptime predicate. |
198 |
\end{itemize} |
199 |
\end{frame} |
200 |
|
201 |
|
202 |
\begin{frame} |
203 |
\frametitle{Recap : the polynomial hierarchy} |
204 |
|
205 |
\begin{itemize} |
206 |
\item polynomial hierarchy: |
207 |
$$ \mbox{PH}= \cup_i \Sigma_i^P$$ |
208 |
\item functional version: |
209 |
\begin{eqnarray*} |
210 |
\fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\ |
211 |
\mbox{FPH} &=& \cup_i \fphi{i} |
212 |
\end{eqnarray*} |
213 |
\end{itemize} |
214 |
|
215 |
in particular: |
216 |
|
217 |
$\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$. |
218 |
\end{frame} |
219 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
220 |
|
221 |
\begin{frame} |
222 |
\frametitle{Our goal} |
223 |
|
224 |
design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH |
225 |
|
226 |
\medskip |
227 |
|
228 |
expected benefits: |
229 |
\begin{itemize} |
230 |
\item bridge {\BA{bounded arithmetic}} and {\ICC{ICC logics}} |
231 |
\item enlarge the toolbox of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC) |
232 |
\end{itemize} |
233 |
\end{frame} |
234 |
|
235 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
236 |
|
237 |
\begin{frame} |
238 |
\frametitle{Methodology} |
239 |
|
240 |
We want to use: |
241 |
\begin{itemize} |
242 |
\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
243 |
\item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}} |
244 |
% \item our \textit{key idea}: |
245 |
% |
246 |
% trade{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}} |
247 |
% |
248 |
% for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}} |
249 |
\end{itemize} |
250 |
\end{frame} |
251 |
|
252 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
253 |
|
254 |
\begin{frame} |
255 |
\frametitle{Ramification} |
256 |
|
257 |
\begin{itemize} |
258 |
\item ramification, a.k.a. tiering, safe recursion |
259 |
\item distinguish two levels of data-types: |
260 |
|
261 |
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion |
262 |
|
263 |
${{N_0}}$ (\textit{safe}) integers cannot; they can just be finitely explored |
264 |
|
265 |
%\smallskip |
266 |
|
267 |
\item BC function algebra (Bellantoni-Cook 92): |
268 |
|
269 |
$f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
270 |
|
271 |
safe recursion scheme: |
272 |
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$ |
273 |
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93 |
274 |
|
275 |
logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02 |
276 |
\end{itemize} |
277 |
\end{frame} |
278 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
279 |
|
280 |
\begin{frame} |
281 |
\frametitle{Methodology: our key idea} |
282 |
|
283 |
% We want to use: |
284 |
\begin{itemize} |
285 |
%\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
286 |
% \item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}} |
287 |
% \item our \textit{key idea}: |
288 |
|
289 |
\item trade |
290 |
|
291 |
{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}} |
292 |
|
293 |
for |
294 |
|
295 |
{\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}} |
296 |
\item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in |
297 |
{\BA{bounded arithmetic}} |
298 |
\end{itemize} |
299 |
\end{frame} |
300 |
|
301 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
302 |
\begin{frame} |
303 |
\frametitle{Ingredients for a logical characterization} |
304 |
|
305 |
\begin{itemize} |
306 |
\item choose a way to \textit{specify} functions |
307 |
\item choose a logic: |
308 |
|
309 |
logical system + axioms, induction scheme |
310 |
\item prove soundness: |
311 |
|
312 |
realizability-like argument, with a well-chosen \textit{target language} |
313 |
\item prove completeness |
314 |
\end{itemize} |
315 |
\end{frame} |
316 |
|
317 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
318 |
|
319 |
\begin{frame} |
320 |
\frametitle{Specifying the functions} |
321 |
|
322 |
Various approaches at hand to specify a function $f$ in a logic: |
323 |
\begin{itemize} |
324 |
\item {\BA{formula specification}} (bounded arithmetic): |
325 |
|
326 |
a formula $A_f$ defines the graph of $f$ |
327 |
\item {\ICC{equational specification}} (Leivant: intrinsic theories) |
328 |
|
329 |
conjunction of first-order equations defining $f$ |
330 |
|
331 |
\item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots) |
332 |
|
333 |
terms of combinatory algebra computing $f$ |
334 |
\item \dots |
335 |
|
336 |
\end{itemize} |
337 |
\end{frame} |
338 |
|
339 |
\begin{frame} |
340 |
\frametitle{Our logical system} |
341 |
|
342 |
Ramified classical arithmetic (\RC): |
343 |
\begin{itemize} |
344 |
\item 1st-order classical logic \dots |
345 |
\item \dots over the language: |
346 |
\begin{itemize} |
347 |
\item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$ |
348 |
\item predicates: $\leq, {\ICC{N_0}}, {\ICC{N_1}}$ |
349 |
\end{itemize} |
350 |
\item with axioms: |
351 |
\begin{itemize} |
352 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted) |
353 |
\smallskip |
354 |
|
355 |
notation: |
356 |
|
357 |
$\begin{array}{lcl} |
358 |
\succ{0}x &:=& 2\cdot x\\ |
359 |
\succ{1}x & :=& \succ{}(2\cdot x) |
360 |
\end{array} |
361 |
$ |
362 |
\item polynomial induction IND: |
363 |
\end{itemize} |
364 |
\end{itemize} |
365 |
{\small $$ A(0) |
366 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) ) |
367 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) |
368 |
\rightarrow \forall x^{\normal} . A(x) $$ |
369 |
} |
370 |
|
371 |
Define all that within a sequent calculus system. |
372 |
|
373 |
$\mathcal{C}$-\RC\ is \RC\ with IND restricted to formulas $A$ belonging to the class $\mathcal{C}$ of formulas. |
374 |
\end{frame} |
375 |
|
376 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
377 |
|
378 |
\begin{frame} |
379 |
\frametitle{Classification of quantifications} |
380 |
|
381 |
% Write $Q$ for $\forall$ or $\exists$. |
382 |
\begin{itemize} |
383 |
\item safe ($N_0$) quantifiers: |
384 |
\begin{eqnarray*} |
385 |
\forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\ |
386 |
\exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A) |
387 |
\end{eqnarray*} |
388 |
\item sharply bounded normal ($\normal$) quantifiers: |
389 |
\begin{eqnarray*} |
390 |
\forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\ |
391 |
\exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A) |
392 |
\end{eqnarray*} |
393 |
%$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$ |
394 |
\end{itemize} |
395 |
\end{frame} |
396 |
|
397 |
%%%%%%%%%%% |
398 |
\begin{frame} |
399 |
\frametitle{Quantifier hierarchy} |
400 |
|
401 |
We define: |
402 |
\begin{itemize} |
403 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers, |
404 |
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers, |
405 |
\item $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers, |
406 |
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$. |
407 |
\end{itemize} |
408 |
\end{frame} |
409 |
|
410 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
411 |
|
412 |
\begin{frame} |
413 |
\frametitle{Result and work-in-progress} |
414 |
|
415 |
\begin{claim}[Soundness] |
416 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
417 |
\end{claim} |
418 |
|
419 |
\begin{claim}[Completeness] |
420 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
421 |
\end{claim} |
422 |
|
423 |
\end{frame} |
424 |
|
425 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
426 |
|
427 |
\begin{frame} |
428 |
\frametitle{Proof idea for soundness: target language $\mu$BC} |
429 |
|
430 |
\begin{itemize} |
431 |
\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH |
432 |
\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
433 |
\begin{itemize} |
434 |
\item initial functions: $p$, $\pi^n_i$, \dots |
435 |
\item safe recursion |
436 |
\item safe composition |
437 |
\end{itemize} |
438 |
|
439 |
BC characterizes the class FP (Bellantoni-Cook 92). |
440 |
%\item $\mu$BC: extends BC with \textit{predicative minimization} |
441 |
% |
442 |
%$f({\red{\vec u}}; \vec x):= \begin{cases} |
443 |
% s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
444 |
%0 & \mbox{ otherwise,} |
445 |
%\end{cases} |
446 |
%$ |
447 |
% |
448 |
% $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization |
449 |
\end{itemize} |
450 |
\end{frame} |
451 |
|
452 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
453 |
|
454 |
\begin{frame} |
455 |
\frametitle{Proof idea for soundness: target language $\mu$BC} |
456 |
|
457 |
\begin{itemize} |
458 |
%\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH |
459 |
%\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
460 |
%\begin{itemize} |
461 |
% \item initial functions: $p$, $\pi^n_i$, \dots |
462 |
% \item safe recursion |
463 |
% \item safe composition |
464 |
%\end{itemize} |
465 |
% |
466 |
%BC characterizes the class FP (Bellantoni-Cook 92). |
467 |
\item $\mu$BC: extends BC with \textit{predicative minimization} |
468 |
|
469 |
$f({\red{\vec u}}; \vec x):= \begin{cases} |
470 |
s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
471 |
0 & \mbox{ otherwise,} |
472 |
\end{cases} |
473 |
$ |
474 |
|
475 |
$\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization |
476 |
\item one obtains |
477 |
|
478 |
\begin{theorem}[Bellantoni 92] |
479 |
|
480 |
The functions of $\mu$BC are exactly those of FPH. |
481 |
|
482 |
The functions of $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$. |
483 |
\end{theorem} |
484 |
\end{itemize} |
485 |
\end{frame} |
486 |
|
487 |
|
488 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
489 |
|
490 |
\begin{frame} |
491 |
\frametitle{Proving soundness} |
492 |
|
493 |
Key intermediary property to prove: |
494 |
\begin{claim} |
495 |
If \RCi\ proves |
496 |
$$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$ |
497 |
then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that |
498 |
$$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$ |
499 |
\end{claim} |
500 |
Proof idea: use witness function method: |
501 |
\begin{itemize} |
502 |
\item use free-cut elimination theorem for the sequent calculus |
503 |
\item then prove the property by induction on sequent calculus rules |
504 |
\end{itemize} |
505 |
\end{frame} |
506 |
|
507 |
|
508 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
509 |
|
510 |
\begin{frame} |
511 |
\frametitle{Proving completeness: in progress} |
512 |
|
513 |
Key intermediary claim: |
514 |
\begin{claim} |
515 |
\label{thm:completeness} |
516 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\ proves $$\forall^{\normal} \vec u . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$ |
517 |
\end{claim} |
518 |
|
519 |
For the minimization construction case, we use \textit{well-ordering property} in \RCi\ . |
520 |
\end{frame} |
521 |
|
522 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
523 |
|
524 |
\begin{frame} |
525 |
\frametitle{Related works} |
526 |
|
527 |
Two previous results \textit{apparently} clash with our claims: |
528 |
\begin{itemize} |
529 |
\item Bellantoni-Hofmann 02: |
530 |
|
531 |
characterization of FP, with induction on arbitrarily quantified formulas |
532 |
|
533 |
but \dots the underlying logic is not classical logic, but linear logic |
534 |
|
535 |
\item Cantini 02: |
536 |
|
537 |
characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$ |
538 |
|
539 |
but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$. |
540 |
\end{itemize} |
541 |
\end{frame} |
542 |
|
543 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
544 |
|
545 |
\begin{frame} |
546 |
\frametitle{Conclusion and perspectives} |
547 |
|
548 |
\begin{itemize} |
549 |
\item we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and FPH complete |
550 |
\item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level $\fphi{i}$, %by calibrating induction with quantifier alternation, |
551 |
but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}} |
552 |
\item could \RC\ be presented as a modal logic (as in Bellantoni-Hofmann02) ? |
553 |
\item we think that \RCi\ can be directly embedded into the bounded arithmetic $S^i_2$ |
554 |
%study direct relationship of \RC\ with the bounded arithmetic $S_2$ |
555 |
\end{itemize} |
556 |
\end{frame} |
557 |
|
558 |
\end{document} |
559 |
|
560 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
561 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
562 |
%---------- |
563 |
|
564 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
565 |
|
566 |
\begin{frame} |
567 |
\frametitle{} |
568 |
|
569 |
\begin{itemize} |
570 |
\item \end{itemize} |
571 |
\end{frame} |
572 |
|
573 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |