Révision 191 CSL17/DICE2017_TALK/unboundedArithmetic.tex

unboundedArithmetic.tex (revision 191)
105 105
}
106 106

  
107 107
\author{Patrick Baillot and Anupam Das}
108
\institute{CNRS / ENS Lyon}
108
\institute{CNRS / ENS Lyon\\
109
DICE-FOPARA 2017 workshop, Uppsala}
109 110

  
110 111

  
111 112
\begin{document}
......
124 125
      & \ICC{(ICC)}\\
125 126
 \hline
126 127
 &\\
127
 & function algebras\\
128
 & types/proofs-as-programs\\
129
 & arithmetics / logics\\
128
% & function algebras\\
129
% & types/proofs-as-programs\\
130
arithmetic & arithmetics / logics\\
130 131
 & \\
131 132
 large variety of & resource-free characterizations of\\
132 133
 complexity classes & complexity classes (e.g. ramification)\\
133 134
 &\\
134
 corresp. with & extensions to programming languages\\
135
 correspondence with & extensions to programming languages\\
135 136
 \textit{proof-complexity} &
136 137
 \end{tabular}
137 138
  \end{frame}
......
149 150
 \BA{Bounded arithmetic}  \qquad \qquad & \ICC{Implicit computational complexity}\\
150 151
 \hline
151 152
 &\\
152
  Buss ($S_1$): & Leivant (intrinsic theories): \\
153
  $\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
153
  Buss ($S_2$): & Leivant (intrinsic theories): \\
154
  $\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
154 155
  &\\
155 156
  FP, FPH & FP
156 157
  \end{tabular}
......
176 177
  \frametitle{Recap : the polynomial hierarchy}
177 178
 
178 179
 \begin{itemize}
179
\item  to be done: definition \dots
180
 \end{itemize}
180
\item  NP: polynomially checkable with polysize witness
181

  
182
$NP=\Sigma_1^P$ example: $k$-CLIQUE
183

  
184
$$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$
185
\item  $\Sigma_2^P$ example: $k$-MAXCLIQUE
186
\end{itemize}
187
$$ \begin{array}{l}
188
 \exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\
189
  (|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (|s_2|\geq k+1 \rightarrow \neg  \mbox{CLIQUE}(s_2,x))   )
190
\end{array}
191
$$
192
\begin{itemize}
193
\item  $\Sigma_i^P$:
194
$$
195
 \exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots  Q^{|s_i|\leq P_i(x) } s_i, 
196
  \mbox{Pred}(\vec s, x)$$
197
  for Pred a Ptime predicate.
198
\end{itemize}
181 199
 \end{frame}
182 200

  
201

  
202
\begin{frame}
203
  \frametitle{Recap : the polynomial hierarchy}
204
 
205
 \begin{itemize}
206
\item polynomial hierarchy: 
207
$$ \mbox{PH}= \cup_i \Sigma_i^P$$
208
\item functional version:
209
\begin{eqnarray*}
210
  \fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\
211
  \mbox{FPH} &=& \cup_i   \fphi{i} 
212
  \end{eqnarray*}
213
  \end{itemize}
214

  
215
in particular:
216

  
217
 $\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$.
218
\end{frame}
183 219
%%%%%%%%%%%%%%%%%%%%%%%%%%%
184 220

  
185 221
\begin{frame}
......
204 240
 We want to use:
205 241
 \begin{itemize}
206 242
\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
207
   \item induction calibrated by logical complexity, from  {\BA{bounded arithmetic}}
243
   \item induction calibrated by logical complexity (quantifiers), from  {\BA{bounded arithmetic}}
244
%   \item our \textit{key idea}:
245
%   
246
%   trade{ \BA{bounded quantifiers $\forall x \leq t$,  $\exists x \leq t$ of bounded arithmetic}}
247
%   
248
%   for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$,  $\exists^{\safe} x$ in a ramified arithmetic}}
208 249
\end{itemize}
209 250
 \end{frame}
210 251

  
......
220 261
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion
221 262

  
222 263
${{N_0}}$ (\textit{safe})  integers cannot; they can just be finitely explored
223
\item ramified recursion scheme:
264

  
265
%\smallskip
266

  
267
\item BC function algebra (Bellantoni-Cook 92):
268

  
269
 $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
270

  
271
 safe recursion scheme:
224 272
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$
225 273
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93
226 274

  
227
          logic for FP: Leivant 95, Cantini 00 
275
          logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02 
228 276
\end{itemize}
229 277
 \end{frame}
278
%%%%%%%%%%%%%%%%%%%%%%%%%%%
230 279

  
280
\begin{frame}
281
  \frametitle{Methodology: our key idea}
282
 
283
% We want to use:
284
 \begin{itemize}
285
%\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
286
%   \item induction calibrated by logical complexity (quantifiers), from  {\BA{bounded arithmetic}}
287
%   \item our \textit{key idea}:
288
   
289
\item   trade
290
   
291
    { \BA{bounded quantifiers $\forall x \leq t$,  $\exists x \leq t$ of bounded arithmetic}}
292
   
293
   for
294
   
295
    {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$,  $\exists^{\safe} x$ in a ramified arithmetic}}
296
\item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in 
297
{\BA{bounded arithmetic}}
298
\end{itemize}
299
 \end{frame}
300

  
231 301
%%%%%%%%%%%%%%%%%%%%%%%%%%%
232 302
\begin{frame}
233 303
  \frametitle{Ingredients for a logical characterization}
......
249 319
\begin{frame}
250 320
  \frametitle{Specifying the functions}
251 321
 
252
 Various approaches to specify a function $f$:
322
 Various approaches at hand to specify a function $f$ in a logic:
253 323
 \begin{itemize}
254 324
\item   {\BA{formula specification}} (bounded arithmetic):
255 325

  
......
258 328

  
259 329
conjunction of first-order equations defining $f$
260 330

  
261
\item applicative theories (Cantini, Kahle-Oitavem \dots)
331
\item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots)
262 332

  
263
combinatory term computing $f$
333
terms of combinatory algebra computing $f$
264 334
\item \dots
265 335

  
266 336
\end{itemize}
......
269 339
\begin{frame}
270 340
  \frametitle{Our logical system}
271 341
 
272
 Ramified classical logic (\RC):
342
 Ramified classical arithmetic (\RC):
273 343
 \begin{itemize}
274 344
\item  1st-order classical logic \dots
275 345
\item \dots over the language:
......
279 349
\end{itemize}
280 350
\item with axioms:
281 351
 \begin{itemize}
282
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
352
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted)
283 353
\smallskip
284 354

  
285 355
notation:
......
308 378
\begin{frame}
309 379
  \frametitle{Classification of quantifications}
310 380
 
311
 Write $Q$ for $\forall$ or $\exists$.
381
% Write $Q$ for $\forall$ or $\exists$.
312 382
 \begin{itemize}
313
\item   safe ($N_0$)/normal ($N_1$) quantifiers:
314

  
315
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$
316
\item sharply bounded quantifiers:
317
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$
383
\item   safe ($N_0$) quantifiers:
384
\begin{eqnarray*}
385
\forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\
386
\exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A)
387
\end{eqnarray*}
388
\item sharply bounded normal ($\normal$) quantifiers:
389
\begin{eqnarray*}
390
\forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\
391
\exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A)
392
\end{eqnarray*}
393
%$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$
318 394
\end{itemize}
319 395
 \end{frame}
320 396

  
......
336 412
\begin{frame}
337 413
  \frametitle{Result and work-in-progress}
338 414
 
339
 \begin{theorem}[Soundness]
415
 \begin{claim}[Soundness]
340 416
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
341
 \end{theorem}
417
 \end{claim}
342 418
 
343
  \begin{conjecture}[Soundness]
419
  \begin{claim}[Completeness]
344 420
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
345
 \end{conjecture}
421
 \end{claim}
346 422

  
347 423
\end{frame}
348 424

  
425
%%%%%%%%%%%%%%%%%%%%%%%%%%%
426

  
427
\begin{frame}
428
  \frametitle{Proof idea for soundness: target language $\mu$BC}
429
 
430
 \begin{itemize}
431
\item   target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
432
\item BC algebra:  $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
433
\begin{itemize}
434
  \item initial functions: $p$, $\pi^n_i$, \dots
435
  \item safe recursion
436
  \item safe composition
437
\end{itemize}
438

  
439
BC characterizes the class FP (Bellantoni-Cook 92).
440
%\item $\mu$BC: extends BC with \textit{predicative minimization}
441
%
442
%$f({\red{\vec u}}; \vec x):= \begin{cases}
443
% s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
444
%0  & \mbox{ otherwise,}
445
%\end{cases}
446
%$
447
%
448
% $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
449
\end{itemize}
450
 \end{frame}
451

  
452
%%%%%%%%%%%%%%%%%%%%%%%%%%%
453

  
454
\begin{frame}
455
  \frametitle{Proof idea for soundness: target language $\mu$BC}
456
 
457
 \begin{itemize}
458
%\item   target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
459
%\item BC algebra:  $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
460
%\begin{itemize}
461
%  \item initial functions: $p$, $\pi^n_i$, \dots
462
%  \item safe recursion
463
%  \item safe composition
464
%\end{itemize}
465
%
466
%BC characterizes the class FP (Bellantoni-Cook 92).
467
\item $\mu$BC: extends BC with \textit{predicative minimization}
468

  
469
$f({\red{\vec u}}; \vec x):= \begin{cases}
470
 s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
471
0  & \mbox{ otherwise,}
472
\end{cases}
473
$
474

  
475
 $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
476
 \item one obtains
477
 
478
 \begin{theorem}[Bellantoni 92]
479
 
480
 The functions of $\mu$BC are exactly those of FPH.
481
 
482
 The functions of  $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$.
483
 \end{theorem}
484
\end{itemize}
485
 \end{frame}
486

  
487

  
488
%%%%%%%%%%%%%%%%%%%%%%%%%%%
489

  
490
\begin{frame}
491
  \frametitle{Proving soundness}
492
 
493
 Key intermediary property to prove:
494
 \begin{claim}
495
 If \RCi\ proves
496
 $$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$
497
  then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that 
498
  $$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$
499
\end{claim}
500
 Proof idea: use witness function method:
501
 \begin{itemize}
502
  \item use free-cut elimination theorem for the sequent calculus
503
  \item then prove the property by induction on sequent calculus rules
504
 \end{itemize}
505
  \end{frame}
506

  
507

  
508
%%%%%%%%%%%%%%%%%%%%%%%%%%%
509

  
510
\begin{frame}
511
  \frametitle{Proving completeness: in progress}
512
 
513
 Key intermediary claim:
514
 \begin{claim}
515
	\label{thm:completeness}
516
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\  proves $$\forall^{\normal} \vec u  . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$
517
\end{claim}
518

  
519
For the minimization construction case, we use \textit{well-ordering property} in \RCi\  .
520
 \end{frame}
521

  
522
%%%%%%%%%%%%%%%%%%%%%%%%%%%
523

  
524
\begin{frame}
525
  \frametitle{Related works}
526
 
527
 Two previous results \textit{apparently} clash with our claims:
528
 \begin{itemize}
529
\item   Bellantoni-Hofmann 02:
530

  
531
characterization of FP, with induction on arbitrarily quantified formulas
532

  
533
but \dots the underlying logic is not classical logic, but linear logic
534

  
535
\item   Cantini 02:
536

  
537
characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$
538

  
539
but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$.
540
 \end{itemize}
541
 \end{frame}
542

  
543
%%%%%%%%%%%%%%%%%%%%%%%%%%%
544

  
545
\begin{frame}
546
  \frametitle{Conclusion and perspectives}
547
 
548
 \begin{itemize}
549
\item   we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and  FPH complete
550
\item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level  $\fphi{i}$,  %by calibrating induction with quantifier alternation, 
551
but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}}
552
\item  could \RC\ be presented as a modal logic (as in  Bellantoni-Hofmann02) ?
553
\item we think that \RCi\  can be directly embedded into the bounded arithmetic $S^i_2$
554
%study direct relationship of \RC\ with the bounded arithmetic $S_2$
555
\end{itemize}
556
 \end{frame}
557

  
349 558
\end{document}
350 559

  
351 560
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Formats disponibles : Unified diff