Révision 191 CSL17/DICE2017_TALK/unboundedArithmetic.tex
unboundedArithmetic.tex (revision 191) | ||
---|---|---|
105 | 105 |
} |
106 | 106 |
|
107 | 107 |
\author{Patrick Baillot and Anupam Das} |
108 |
\institute{CNRS / ENS Lyon} |
|
108 |
\institute{CNRS / ENS Lyon\\ |
|
109 |
DICE-FOPARA 2017 workshop, Uppsala} |
|
109 | 110 |
|
110 | 111 |
|
111 | 112 |
\begin{document} |
... | ... | |
124 | 125 |
& \ICC{(ICC)}\\ |
125 | 126 |
\hline |
126 | 127 |
&\\ |
127 |
& function algebras\\ |
|
128 |
& types/proofs-as-programs\\ |
|
129 |
& arithmetics / logics\\ |
|
128 |
% & function algebras\\
|
|
129 |
% & types/proofs-as-programs\\
|
|
130 |
arithmetic & arithmetics / logics\\
|
|
130 | 131 |
& \\ |
131 | 132 |
large variety of & resource-free characterizations of\\ |
132 | 133 |
complexity classes & complexity classes (e.g. ramification)\\ |
133 | 134 |
&\\ |
134 |
corresp. with & extensions to programming languages\\
|
|
135 |
correspondence with & extensions to programming languages\\
|
|
135 | 136 |
\textit{proof-complexity} & |
136 | 137 |
\end{tabular} |
137 | 138 |
\end{frame} |
... | ... | |
149 | 150 |
\BA{Bounded arithmetic} \qquad \qquad & \ICC{Implicit computational complexity}\\ |
150 | 151 |
\hline |
151 | 152 |
&\\ |
152 |
Buss ($S_1$): & Leivant (intrinsic theories): \\
|
|
153 |
$\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
|
|
153 |
Buss ($S_2$): & Leivant (intrinsic theories): \\
|
|
154 |
$\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
|
|
154 | 155 |
&\\ |
155 | 156 |
FP, FPH & FP |
156 | 157 |
\end{tabular} |
... | ... | |
176 | 177 |
\frametitle{Recap : the polynomial hierarchy} |
177 | 178 |
|
178 | 179 |
\begin{itemize} |
179 |
\item to be done: definition \dots |
|
180 |
\end{itemize} |
|
180 |
\item NP: polynomially checkable with polysize witness |
|
181 |
|
|
182 |
$NP=\Sigma_1^P$ example: $k$-CLIQUE |
|
183 |
|
|
184 |
$$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$ |
|
185 |
\item $\Sigma_2^P$ example: $k$-MAXCLIQUE |
|
186 |
\end{itemize} |
|
187 |
$$ \begin{array}{l} |
|
188 |
\exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\ |
|
189 |
(|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (|s_2|\geq k+1 \rightarrow \neg \mbox{CLIQUE}(s_2,x)) ) |
|
190 |
\end{array} |
|
191 |
$$ |
|
192 |
\begin{itemize} |
|
193 |
\item $\Sigma_i^P$: |
|
194 |
$$ |
|
195 |
\exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots Q^{|s_i|\leq P_i(x) } s_i, |
|
196 |
\mbox{Pred}(\vec s, x)$$ |
|
197 |
for Pred a Ptime predicate. |
|
198 |
\end{itemize} |
|
181 | 199 |
\end{frame} |
182 | 200 |
|
201 |
|
|
202 |
\begin{frame} |
|
203 |
\frametitle{Recap : the polynomial hierarchy} |
|
204 |
|
|
205 |
\begin{itemize} |
|
206 |
\item polynomial hierarchy: |
|
207 |
$$ \mbox{PH}= \cup_i \Sigma_i^P$$ |
|
208 |
\item functional version: |
|
209 |
\begin{eqnarray*} |
|
210 |
\fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\ |
|
211 |
\mbox{FPH} &=& \cup_i \fphi{i} |
|
212 |
\end{eqnarray*} |
|
213 |
\end{itemize} |
|
214 |
|
|
215 |
in particular: |
|
216 |
|
|
217 |
$\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$. |
|
218 |
\end{frame} |
|
183 | 219 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
184 | 220 |
|
185 | 221 |
\begin{frame} |
... | ... | |
204 | 240 |
We want to use: |
205 | 241 |
\begin{itemize} |
206 | 242 |
\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
207 |
\item induction calibrated by logical complexity, from {\BA{bounded arithmetic}} |
|
243 |
\item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}} |
|
244 |
% \item our \textit{key idea}: |
|
245 |
% |
|
246 |
% trade{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}} |
|
247 |
% |
|
248 |
% for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}} |
|
208 | 249 |
\end{itemize} |
209 | 250 |
\end{frame} |
210 | 251 |
|
... | ... | |
220 | 261 |
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion |
221 | 262 |
|
222 | 263 |
${{N_0}}$ (\textit{safe}) integers cannot; they can just be finitely explored |
223 |
\item ramified recursion scheme: |
|
264 |
|
|
265 |
%\smallskip |
|
266 |
|
|
267 |
\item BC function algebra (Bellantoni-Cook 92): |
|
268 |
|
|
269 |
$f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
|
270 |
|
|
271 |
safe recursion scheme: |
|
224 | 272 |
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$ |
225 | 273 |
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93 |
226 | 274 |
|
227 |
logic for FP: Leivant 95, Cantini 00
|
|
275 |
logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02
|
|
228 | 276 |
\end{itemize} |
229 | 277 |
\end{frame} |
278 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
230 | 279 |
|
280 |
\begin{frame} |
|
281 |
\frametitle{Methodology: our key idea} |
|
282 |
|
|
283 |
% We want to use: |
|
284 |
\begin{itemize} |
|
285 |
%\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
|
286 |
% \item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}} |
|
287 |
% \item our \textit{key idea}: |
|
288 |
|
|
289 |
\item trade |
|
290 |
|
|
291 |
{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}} |
|
292 |
|
|
293 |
for |
|
294 |
|
|
295 |
{\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}} |
|
296 |
\item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in |
|
297 |
{\BA{bounded arithmetic}} |
|
298 |
\end{itemize} |
|
299 |
\end{frame} |
|
300 |
|
|
231 | 301 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
232 | 302 |
\begin{frame} |
233 | 303 |
\frametitle{Ingredients for a logical characterization} |
... | ... | |
249 | 319 |
\begin{frame} |
250 | 320 |
\frametitle{Specifying the functions} |
251 | 321 |
|
252 |
Various approaches to specify a function $f$:
|
|
322 |
Various approaches at hand to specify a function $f$ in a logic:
|
|
253 | 323 |
\begin{itemize} |
254 | 324 |
\item {\BA{formula specification}} (bounded arithmetic): |
255 | 325 |
|
... | ... | |
258 | 328 |
|
259 | 329 |
conjunction of first-order equations defining $f$ |
260 | 330 |
|
261 |
\item applicative theories (Cantini, Kahle-Oitavem \dots)
|
|
331 |
\item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots)
|
|
262 | 332 |
|
263 |
combinatory term computing $f$
|
|
333 |
terms of combinatory algebra computing $f$
|
|
264 | 334 |
\item \dots |
265 | 335 |
|
266 | 336 |
\end{itemize} |
... | ... | |
269 | 339 |
\begin{frame} |
270 | 340 |
\frametitle{Our logical system} |
271 | 341 |
|
272 |
Ramified classical logic (\RC):
|
|
342 |
Ramified classical arithmetic (\RC):
|
|
273 | 343 |
\begin{itemize} |
274 | 344 |
\item 1st-order classical logic \dots |
275 | 345 |
\item \dots over the language: |
... | ... | |
279 | 349 |
\end{itemize} |
280 | 350 |
\item with axioms: |
281 | 351 |
\begin{itemize} |
282 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
|
|
352 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted)
|
|
283 | 353 |
\smallskip |
284 | 354 |
|
285 | 355 |
notation: |
... | ... | |
308 | 378 |
\begin{frame} |
309 | 379 |
\frametitle{Classification of quantifications} |
310 | 380 |
|
311 |
Write $Q$ for $\forall$ or $\exists$. |
|
381 |
% Write $Q$ for $\forall$ or $\exists$.
|
|
312 | 382 |
\begin{itemize} |
313 |
\item safe ($N_0$)/normal ($N_1$) quantifiers: |
|
314 |
|
|
315 |
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$ |
|
316 |
\item sharply bounded quantifiers: |
|
317 |
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$ |
|
383 |
\item safe ($N_0$) quantifiers: |
|
384 |
\begin{eqnarray*} |
|
385 |
\forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\ |
|
386 |
\exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A) |
|
387 |
\end{eqnarray*} |
|
388 |
\item sharply bounded normal ($\normal$) quantifiers: |
|
389 |
\begin{eqnarray*} |
|
390 |
\forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\ |
|
391 |
\exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A) |
|
392 |
\end{eqnarray*} |
|
393 |
%$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$ |
|
318 | 394 |
\end{itemize} |
319 | 395 |
\end{frame} |
320 | 396 |
|
... | ... | |
336 | 412 |
\begin{frame} |
337 | 413 |
\frametitle{Result and work-in-progress} |
338 | 414 |
|
339 |
\begin{theorem}[Soundness]
|
|
415 |
\begin{claim}[Soundness]
|
|
340 | 416 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
341 |
\end{theorem}
|
|
417 |
\end{claim}
|
|
342 | 418 |
|
343 |
\begin{conjecture}[Soundness]
|
|
419 |
\begin{claim}[Completeness]
|
|
344 | 420 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
345 |
\end{conjecture}
|
|
421 |
\end{claim}
|
|
346 | 422 |
|
347 | 423 |
\end{frame} |
348 | 424 |
|
425 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
426 |
|
|
427 |
\begin{frame} |
|
428 |
\frametitle{Proof idea for soundness: target language $\mu$BC} |
|
429 |
|
|
430 |
\begin{itemize} |
|
431 |
\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH |
|
432 |
\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
|
433 |
\begin{itemize} |
|
434 |
\item initial functions: $p$, $\pi^n_i$, \dots |
|
435 |
\item safe recursion |
|
436 |
\item safe composition |
|
437 |
\end{itemize} |
|
438 |
|
|
439 |
BC characterizes the class FP (Bellantoni-Cook 92). |
|
440 |
%\item $\mu$BC: extends BC with \textit{predicative minimization} |
|
441 |
% |
|
442 |
%$f({\red{\vec u}}; \vec x):= \begin{cases} |
|
443 |
% s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
|
444 |
%0 & \mbox{ otherwise,} |
|
445 |
%\end{cases} |
|
446 |
%$ |
|
447 |
% |
|
448 |
% $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization |
|
449 |
\end{itemize} |
|
450 |
\end{frame} |
|
451 |
|
|
452 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
453 |
|
|
454 |
\begin{frame} |
|
455 |
\frametitle{Proof idea for soundness: target language $\mu$BC} |
|
456 |
|
|
457 |
\begin{itemize} |
|
458 |
%\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH |
|
459 |
%\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$ |
|
460 |
%\begin{itemize} |
|
461 |
% \item initial functions: $p$, $\pi^n_i$, \dots |
|
462 |
% \item safe recursion |
|
463 |
% \item safe composition |
|
464 |
%\end{itemize} |
|
465 |
% |
|
466 |
%BC characterizes the class FP (Bellantoni-Cook 92). |
|
467 |
\item $\mu$BC: extends BC with \textit{predicative minimization} |
|
468 |
|
|
469 |
$f({\red{\vec u}}; \vec x):= \begin{cases} |
|
470 |
s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
|
471 |
0 & \mbox{ otherwise,} |
|
472 |
\end{cases} |
|
473 |
$ |
|
474 |
|
|
475 |
$\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization |
|
476 |
\item one obtains |
|
477 |
|
|
478 |
\begin{theorem}[Bellantoni 92] |
|
479 |
|
|
480 |
The functions of $\mu$BC are exactly those of FPH. |
|
481 |
|
|
482 |
The functions of $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$. |
|
483 |
\end{theorem} |
|
484 |
\end{itemize} |
|
485 |
\end{frame} |
|
486 |
|
|
487 |
|
|
488 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
489 |
|
|
490 |
\begin{frame} |
|
491 |
\frametitle{Proving soundness} |
|
492 |
|
|
493 |
Key intermediary property to prove: |
|
494 |
\begin{claim} |
|
495 |
If \RCi\ proves |
|
496 |
$$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$ |
|
497 |
then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that |
|
498 |
$$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$ |
|
499 |
\end{claim} |
|
500 |
Proof idea: use witness function method: |
|
501 |
\begin{itemize} |
|
502 |
\item use free-cut elimination theorem for the sequent calculus |
|
503 |
\item then prove the property by induction on sequent calculus rules |
|
504 |
\end{itemize} |
|
505 |
\end{frame} |
|
506 |
|
|
507 |
|
|
508 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
509 |
|
|
510 |
\begin{frame} |
|
511 |
\frametitle{Proving completeness: in progress} |
|
512 |
|
|
513 |
Key intermediary claim: |
|
514 |
\begin{claim} |
|
515 |
\label{thm:completeness} |
|
516 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\ proves $$\forall^{\normal} \vec u . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$ |
|
517 |
\end{claim} |
|
518 |
|
|
519 |
For the minimization construction case, we use \textit{well-ordering property} in \RCi\ . |
|
520 |
\end{frame} |
|
521 |
|
|
522 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
523 |
|
|
524 |
\begin{frame} |
|
525 |
\frametitle{Related works} |
|
526 |
|
|
527 |
Two previous results \textit{apparently} clash with our claims: |
|
528 |
\begin{itemize} |
|
529 |
\item Bellantoni-Hofmann 02: |
|
530 |
|
|
531 |
characterization of FP, with induction on arbitrarily quantified formulas |
|
532 |
|
|
533 |
but \dots the underlying logic is not classical logic, but linear logic |
|
534 |
|
|
535 |
\item Cantini 02: |
|
536 |
|
|
537 |
characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$ |
|
538 |
|
|
539 |
but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$. |
|
540 |
\end{itemize} |
|
541 |
\end{frame} |
|
542 |
|
|
543 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
544 |
|
|
545 |
\begin{frame} |
|
546 |
\frametitle{Conclusion and perspectives} |
|
547 |
|
|
548 |
\begin{itemize} |
|
549 |
\item we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and FPH complete |
|
550 |
\item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level $\fphi{i}$, %by calibrating induction with quantifier alternation, |
|
551 |
but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}} |
|
552 |
\item could \RC\ be presented as a modal logic (as in Bellantoni-Hofmann02) ? |
|
553 |
\item we think that \RCi\ can be directly embedded into the bounded arithmetic $S^i_2$ |
|
554 |
%study direct relationship of \RC\ with the bounded arithmetic $S_2$ |
|
555 |
\end{itemize} |
|
556 |
\end{frame} |
|
557 |
|
|
349 | 558 |
\end{document} |
350 | 559 |
|
351 | 560 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
Formats disponibles : Unified diff