105 |
105 |
}
|
106 |
106 |
|
107 |
107 |
\author{Patrick Baillot and Anupam Das}
|
108 |
|
\institute{CNRS / ENS Lyon}
|
|
108 |
\institute{CNRS / ENS Lyon\\
|
|
109 |
DICE-FOPARA 2017 workshop, Uppsala}
|
109 |
110 |
|
110 |
111 |
|
111 |
112 |
\begin{document}
|
... | ... | |
124 |
125 |
& \ICC{(ICC)}\\
|
125 |
126 |
\hline
|
126 |
127 |
&\\
|
127 |
|
& function algebras\\
|
128 |
|
& types/proofs-as-programs\\
|
129 |
|
& arithmetics / logics\\
|
|
128 |
% & function algebras\\
|
|
129 |
% & types/proofs-as-programs\\
|
|
130 |
arithmetic & arithmetics / logics\\
|
130 |
131 |
& \\
|
131 |
132 |
large variety of & resource-free characterizations of\\
|
132 |
133 |
complexity classes & complexity classes (e.g. ramification)\\
|
133 |
134 |
&\\
|
134 |
|
corresp. with & extensions to programming languages\\
|
|
135 |
correspondence with & extensions to programming languages\\
|
135 |
136 |
\textit{proof-complexity} &
|
136 |
137 |
\end{tabular}
|
137 |
138 |
\end{frame}
|
... | ... | |
149 |
150 |
\BA{Bounded arithmetic} \qquad \qquad & \ICC{Implicit computational complexity}\\
|
150 |
151 |
\hline
|
151 |
152 |
&\\
|
152 |
|
Buss ($S_1$): & Leivant (intrinsic theories): \\
|
153 |
|
$\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
|
|
153 |
Buss ($S_2$): & Leivant (intrinsic theories): \\
|
|
154 |
$\forall x, {\exists y } . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
|
154 |
155 |
&\\
|
155 |
156 |
FP, FPH & FP
|
156 |
157 |
\end{tabular}
|
... | ... | |
176 |
177 |
\frametitle{Recap : the polynomial hierarchy}
|
177 |
178 |
|
178 |
179 |
\begin{itemize}
|
179 |
|
\item to be done: definition \dots
|
180 |
|
\end{itemize}
|
|
180 |
\item NP: polynomially checkable with polysize witness
|
|
181 |
|
|
182 |
$NP=\Sigma_1^P$ example: $k$-CLIQUE
|
|
183 |
|
|
184 |
$$\exists^{|s_1|\leq k } s_1, (|s_1|=k \cand \mbox{CLIQUE}(s_1,x))$$
|
|
185 |
\item $\Sigma_2^P$ example: $k$-MAXCLIQUE
|
|
186 |
\end{itemize}
|
|
187 |
$$ \begin{array}{l}
|
|
188 |
\exists^{|s_1|\leq k } s_1, \forall^{|s_2|\leq k+1 } s_2,\\
|
|
189 |
(|s_1|=k \cand \mbox{CLIQUE}(s_1,x) \cand (|s_2|\geq k+1 \rightarrow \neg \mbox{CLIQUE}(s_2,x)) )
|
|
190 |
\end{array}
|
|
191 |
$$
|
|
192 |
\begin{itemize}
|
|
193 |
\item $\Sigma_i^P$:
|
|
194 |
$$
|
|
195 |
\exists^{|s_1|\leq P_1(x) } s_1, \forall^{|s_2|\leq P_2(x) } s_2, \dots Q^{|s_i|\leq P_i(x) } s_i,
|
|
196 |
\mbox{Pred}(\vec s, x)$$
|
|
197 |
for Pred a Ptime predicate.
|
|
198 |
\end{itemize}
|
181 |
199 |
\end{frame}
|
182 |
200 |
|
|
201 |
|
|
202 |
\begin{frame}
|
|
203 |
\frametitle{Recap : the polynomial hierarchy}
|
|
204 |
|
|
205 |
\begin{itemize}
|
|
206 |
\item polynomial hierarchy:
|
|
207 |
$$ \mbox{PH}= \cup_i \Sigma_i^P$$
|
|
208 |
\item functional version:
|
|
209 |
\begin{eqnarray*}
|
|
210 |
\fphi{i} &=& \mbox{FP}^{\Sigma_{i-1}^P}\\
|
|
211 |
\mbox{FPH} &=& \cup_i \fphi{i}
|
|
212 |
\end{eqnarray*}
|
|
213 |
\end{itemize}
|
|
214 |
|
|
215 |
in particular:
|
|
216 |
|
|
217 |
$\fphi{1}=\mbox{FP}, \qquad \fphi{2}=\mbox{FP}^{\mbox{NP}}$.
|
|
218 |
\end{frame}
|
183 |
219 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
184 |
220 |
|
185 |
221 |
\begin{frame}
|
... | ... | |
204 |
240 |
We want to use:
|
205 |
241 |
\begin{itemize}
|
206 |
242 |
\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}}
|
207 |
|
\item induction calibrated by logical complexity, from {\BA{bounded arithmetic}}
|
|
243 |
\item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}}
|
|
244 |
% \item our \textit{key idea}:
|
|
245 |
%
|
|
246 |
% trade{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}}
|
|
247 |
%
|
|
248 |
% for {\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}}
|
208 |
249 |
\end{itemize}
|
209 |
250 |
\end{frame}
|
210 |
251 |
|
... | ... | |
220 |
261 |
${\red{N_1}}$ (\textit{normal}) integers can trigger induction/recursion
|
221 |
262 |
|
222 |
263 |
${{N_0}}$ (\textit{safe}) integers cannot; they can just be finitely explored
|
223 |
|
\item ramified recursion scheme:
|
|
264 |
|
|
265 |
%\smallskip
|
|
266 |
|
|
267 |
\item BC function algebra (Bellantoni-Cook 92):
|
|
268 |
|
|
269 |
$f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
|
|
270 |
|
|
271 |
safe recursion scheme:
|
224 |
272 |
$$ f({\red{\succ{i} u, \vec v}}{\textbf ;} \vec x)=F_i ({\red{u,\vec v}}{\textbf ; }f(u, \vec v;\vec x), \vec x)$$
|
225 |
273 |
\item function algebra for FP: Bellantoni-Cook 92, Leivant 93
|
226 |
274 |
|
227 |
|
logic for FP: Leivant 95, Cantini 00
|
|
275 |
logic for FP: Leivant 95, Cantini 02, Bellantoni-Hofmann 02
|
228 |
276 |
\end{itemize}
|
229 |
277 |
\end{frame}
|
|
278 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
230 |
279 |
|
|
280 |
\begin{frame}
|
|
281 |
\frametitle{Methodology: our key idea}
|
|
282 |
|
|
283 |
% We want to use:
|
|
284 |
\begin{itemize}
|
|
285 |
%\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}}
|
|
286 |
% \item induction calibrated by logical complexity (quantifiers), from {\BA{bounded arithmetic}}
|
|
287 |
% \item our \textit{key idea}:
|
|
288 |
|
|
289 |
\item trade
|
|
290 |
|
|
291 |
{ \BA{bounded quantifiers $\forall x \leq t$, $\exists x \leq t$ of bounded arithmetic}}
|
|
292 |
|
|
293 |
for
|
|
294 |
|
|
295 |
{\ICC{unbounded \textit{safe} quantifiers $\forall^{\safe } x$, $\exists^{\safe} x$ in a ramified arithmetic}}
|
|
296 |
\item calibrate the arithmetic by considering the number of ({\ICC{safe}}) quantifier alternations in induction formulas $A$, as in
|
|
297 |
{\BA{bounded arithmetic}}
|
|
298 |
\end{itemize}
|
|
299 |
\end{frame}
|
|
300 |
|
231 |
301 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
232 |
302 |
\begin{frame}
|
233 |
303 |
\frametitle{Ingredients for a logical characterization}
|
... | ... | |
249 |
319 |
\begin{frame}
|
250 |
320 |
\frametitle{Specifying the functions}
|
251 |
321 |
|
252 |
|
Various approaches to specify a function $f$:
|
|
322 |
Various approaches at hand to specify a function $f$ in a logic:
|
253 |
323 |
\begin{itemize}
|
254 |
324 |
\item {\BA{formula specification}} (bounded arithmetic):
|
255 |
325 |
|
... | ... | |
258 |
328 |
|
259 |
329 |
conjunction of first-order equations defining $f$
|
260 |
330 |
|
261 |
|
\item applicative theories (Cantini, Kahle-Oitavem \dots)
|
|
331 |
\item combinatory terms (applicative theories: Feferman, Cantini, Kahle-Oitavem \dots)
|
262 |
332 |
|
263 |
|
combinatory term computing $f$
|
|
333 |
terms of combinatory algebra computing $f$
|
264 |
334 |
\item \dots
|
265 |
335 |
|
266 |
336 |
\end{itemize}
|
... | ... | |
269 |
339 |
\begin{frame}
|
270 |
340 |
\frametitle{Our logical system}
|
271 |
341 |
|
272 |
|
Ramified classical logic (\RC):
|
|
342 |
Ramified classical arithmetic (\RC):
|
273 |
343 |
\begin{itemize}
|
274 |
344 |
\item 1st-order classical logic \dots
|
275 |
345 |
\item \dots over the language:
|
... | ... | |
279 |
349 |
\end{itemize}
|
280 |
350 |
\item with axioms:
|
281 |
351 |
\begin{itemize}
|
282 |
|
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
|
|
352 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_2$, but sorted)
|
283 |
353 |
\smallskip
|
284 |
354 |
|
285 |
355 |
notation:
|
... | ... | |
308 |
378 |
\begin{frame}
|
309 |
379 |
\frametitle{Classification of quantifications}
|
310 |
380 |
|
311 |
|
Write $Q$ for $\forall$ or $\exists$.
|
|
381 |
% Write $Q$ for $\forall$ or $\exists$.
|
312 |
382 |
\begin{itemize}
|
313 |
|
\item safe ($N_0$)/normal ($N_1$) quantifiers:
|
314 |
|
|
315 |
|
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$
|
316 |
|
\item sharply bounded quantifiers:
|
317 |
|
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$
|
|
383 |
\item safe ($N_0$) quantifiers:
|
|
384 |
\begin{eqnarray*}
|
|
385 |
\forall^{N_0}x.A &:=& \forall x.(N_0(x) \rightarrow A)\\
|
|
386 |
\exists^{N_0}x.A &:=& \exists x.(N_0(x) \cand A)
|
|
387 |
\end{eqnarray*}
|
|
388 |
\item sharply bounded normal ($\normal$) quantifiers:
|
|
389 |
\begin{eqnarray*}
|
|
390 |
\forall^{N_1}x\leq |t| .A &:=& \forall x.(N_1(x) \rightarrow (x\leq |t|) \rightarrow A)\\
|
|
391 |
\exists^{N_1}x\leq |t| .A &:=& \exists x.(N_1(x) \cand(x\leq |t|) \cand A)
|
|
392 |
\end{eqnarray*}
|
|
393 |
%$$Q^{N_i}x\leq |t|.\; A := Qx.(N_i(x) \rightarrow (x\leq |t|) \rightarrow A)$$
|
318 |
394 |
\end{itemize}
|
319 |
395 |
\end{frame}
|
320 |
396 |
|
... | ... | |
336 |
412 |
\begin{frame}
|
337 |
413 |
\frametitle{Result and work-in-progress}
|
338 |
414 |
|
339 |
|
\begin{theorem}[Soundness]
|
|
415 |
\begin{claim}[Soundness]
|
340 |
416 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
|
341 |
|
\end{theorem}
|
|
417 |
\end{claim}
|
342 |
418 |
|
343 |
|
\begin{conjecture}[Soundness]
|
|
419 |
\begin{claim}[Completeness]
|
344 |
420 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
|
345 |
|
\end{conjecture}
|
|
421 |
\end{claim}
|
346 |
422 |
|
347 |
423 |
\end{frame}
|
348 |
424 |
|
|
425 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
426 |
|
|
427 |
\begin{frame}
|
|
428 |
\frametitle{Proof idea for soundness: target language $\mu$BC}
|
|
429 |
|
|
430 |
\begin{itemize}
|
|
431 |
\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
|
|
432 |
\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
|
|
433 |
\begin{itemize}
|
|
434 |
\item initial functions: $p$, $\pi^n_i$, \dots
|
|
435 |
\item safe recursion
|
|
436 |
\item safe composition
|
|
437 |
\end{itemize}
|
|
438 |
|
|
439 |
BC characterizes the class FP (Bellantoni-Cook 92).
|
|
440 |
%\item $\mu$BC: extends BC with \textit{predicative minimization}
|
|
441 |
%
|
|
442 |
%$f({\red{\vec u}}; \vec x):= \begin{cases}
|
|
443 |
% s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\
|
|
444 |
%0 & \mbox{ otherwise,}
|
|
445 |
%\end{cases}
|
|
446 |
%$
|
|
447 |
%
|
|
448 |
% $\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
|
|
449 |
\end{itemize}
|
|
450 |
\end{frame}
|
|
451 |
|
|
452 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
453 |
|
|
454 |
\begin{frame}
|
|
455 |
\frametitle{Proof idea for soundness: target language $\mu$BC}
|
|
456 |
|
|
457 |
\begin{itemize}
|
|
458 |
%\item target language: $\mu$BC, a function algebra (Bellantoni 93) extending BC and characterizing FPH
|
|
459 |
%\item BC algebra: $f({\red{\vec u}}^{\; {\red{N_1}}}{\textbf ;} \vec x^{\; N_0})$
|
|
460 |
%\begin{itemize}
|
|
461 |
% \item initial functions: $p$, $\pi^n_i$, \dots
|
|
462 |
% \item safe recursion
|
|
463 |
% \item safe composition
|
|
464 |
%\end{itemize}
|
|
465 |
%
|
|
466 |
%BC characterizes the class FP (Bellantoni-Cook 92).
|
|
467 |
\item $\mu$BC: extends BC with \textit{predicative minimization}
|
|
468 |
|
|
469 |
$f({\red{\vec u}}; \vec x):= \begin{cases}
|
|
470 |
s_1(\mu y.h({\red{\vec u}}; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\
|
|
471 |
0 & \mbox{ otherwise,}
|
|
472 |
\end{cases}
|
|
473 |
$
|
|
474 |
|
|
475 |
$\mu \mbox{BC}^i$ functions: defined by at most $i$ nestings of minimization
|
|
476 |
\item one obtains
|
|
477 |
|
|
478 |
\begin{theorem}[Bellantoni 92]
|
|
479 |
|
|
480 |
The functions of $\mu$BC are exactly those of FPH.
|
|
481 |
|
|
482 |
The functions of $\mu \mbox{BC}^{\; i-1}$ are exactly those of $\fphi{i}$.
|
|
483 |
\end{theorem}
|
|
484 |
\end{itemize}
|
|
485 |
\end{frame}
|
|
486 |
|
|
487 |
|
|
488 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
489 |
|
|
490 |
\begin{frame}
|
|
491 |
\frametitle{Proving soundness}
|
|
492 |
|
|
493 |
Key intermediary property to prove:
|
|
494 |
\begin{claim}
|
|
495 |
If \RCi\ proves
|
|
496 |
$$\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$$
|
|
497 |
then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that
|
|
498 |
$$\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x)).$$
|
|
499 |
\end{claim}
|
|
500 |
Proof idea: use witness function method:
|
|
501 |
\begin{itemize}
|
|
502 |
\item use free-cut elimination theorem for the sequent calculus
|
|
503 |
\item then prove the property by induction on sequent calculus rules
|
|
504 |
\end{itemize}
|
|
505 |
\end{frame}
|
|
506 |
|
|
507 |
|
|
508 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
509 |
|
|
510 |
\begin{frame}
|
|
511 |
\frametitle{Proving completeness: in progress}
|
|
512 |
|
|
513 |
Key intermediary claim:
|
|
514 |
\begin{claim}
|
|
515 |
\label{thm:completeness}
|
|
516 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma^{\safe}_i$ formula $A_f(\vec u, \vec x)$ such that \RCi\ proves $$\forall^{\normal} \vec u . \forall^{\safe} \vec x. \exists^{\safe} ! y. A_f(\vec u , \vec x , y )$$ and $$\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x)).$$
|
|
517 |
\end{claim}
|
|
518 |
|
|
519 |
For the minimization construction case, we use \textit{well-ordering property} in \RCi\ .
|
|
520 |
\end{frame}
|
|
521 |
|
|
522 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
523 |
|
|
524 |
\begin{frame}
|
|
525 |
\frametitle{Related works}
|
|
526 |
|
|
527 |
Two previous results \textit{apparently} clash with our claims:
|
|
528 |
\begin{itemize}
|
|
529 |
\item Bellantoni-Hofmann 02:
|
|
530 |
|
|
531 |
characterization of FP, with induction on arbitrarily quantified formulas
|
|
532 |
|
|
533 |
but \dots the underlying logic is not classical logic, but linear logic
|
|
534 |
|
|
535 |
\item Cantini 02:
|
|
536 |
|
|
537 |
characterization of FP in a ramified classical logic, with induction on arbitrarily quantified formulas $A$
|
|
538 |
|
|
539 |
but \dots occurrences of $\safe$ in $A$ need to be positive, hence it corresponds to our $\Sigma^{\safe}_1$.
|
|
540 |
\end{itemize}
|
|
541 |
\end{frame}
|
|
542 |
|
|
543 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
544 |
|
|
545 |
\begin{frame}
|
|
546 |
\frametitle{Conclusion and perspectives}
|
|
547 |
|
|
548 |
\begin{itemize}
|
|
549 |
\item we defined a ramified arithmetic with unbounded quantification which we claim is FPH sound, and FPH complete
|
|
550 |
\item this yields an implicit analog of Buss' bounded arithmetic $S_2$, with a characterization of each level $\fphi{i}$, %by calibrating induction with quantifier alternation,
|
|
551 |
but where {\BA{bounded quantification}} has been replaced by {\ICC{safe quantification}}
|
|
552 |
\item could \RC\ be presented as a modal logic (as in Bellantoni-Hofmann02) ?
|
|
553 |
\item we think that \RCi\ can be directly embedded into the bounded arithmetic $S^i_2$
|
|
554 |
%study direct relationship of \RC\ with the bounded arithmetic $S_2$
|
|
555 |
\end{itemize}
|
|
556 |
\end{frame}
|
|
557 |
|
349 |
558 |
\end{document}
|
350 |
559 |
|
351 |
560 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|