Statistiques
| Révision :

root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 189

Historique | Voir | Annoter | Télécharger (8,44 ko)

1

    
2
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper}
3
\documentclass{beamer}
4
\usepackage{amsfonts,latexsym,amssymb, amsmath}
5
\usepackage{stmaryrd}
6
\usepackage{graphicx} 
7
\usepackage{eepic}
8
\usepackage[dvips]{epsfig}
9
%\usepackage{psfig}
10
%\input head.tex
11
\usepackage{proof,bussproofs}
12
%\usepackage{ desseins_s}
13

    
14

    
15
%\usepackage{microtype}%if unwanted, comment out or use option "draft"
16
%\usepackage[dvipsnames]{xcolor}
17

    
18
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
19

    
20
%\bibliographystyle{plainurl}% the recommended bibstyle
21

    
22
%\usepackage[lutzsyntax]{virginialake}
23
\input{ph-macros}
24

    
25

    
26

    
27
\setbeamercolor{block title}{bg=blue!10}
28
\setbeamercolor{block body}{bg=blue!10}
29
\definecolor{monred}{HTML}{9D0909}
30
%\definecolor{monbleu}{RVB}{0,0,1}
31
 \def\red#1{\color{red}{#1}}
32
 \def\blue#1{\color{blue}{#1}}
33
 \def\green#1{\color{green}{#1}}
34
\def\black{}
35
\def\BA#1{\color{red}{#1}}
36
 \def\ICC#1{\color{blue}{#1}}
37

    
38

    
39
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%%
40
%\def\un#1{\underline{#1}}
41
%\def\point#1{{\bf #1.}}
42
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}}
43
%\newcommand{\etq}[1]{\mbox{{\bf #1}}}
44
%\newcommand{\Rulone}[1]{%
45
%          \begin{center}
46
%           \makebox[12cm]{\hspace*{\fill}
47
%                 \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill}
48
%                }
49
%          \end{center}
50
%  }
51
%
52
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}}
53
%
54
%\newcommand{\Rultwo}[2]{%
55
%          \begin{center}
56
%           \makebox[12cm]{
57
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt}
58
%         \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}}
59
%                }
60
%          \end{center}
61
%  }
62
%\newcounter{ex}
63
%%\newtheorem{example}[ex]{Example}
64
%
65
%
66
%\def\para#1{\paragraph{#1}}
67
%\newtheorem{theo}{Theorem}
68
%\newtheorem{de}{Definition}
69
%\newtheorem{prop}[theo]{Proposition}
70
%\newtheorem{lem}[theo]{Lemma}
71
%\newtheorem{Cor}[theo]{Corollary}
72
%\newtheorem{remark}[theo]{Remark}
73
%\newcounter{pb}
74
%\newtheorem{problem}[pb]{Problem}
75
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$}
76

    
77
%---------------------
78
%% Definition of new colors
79
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8}
80
%
81
%\newrgbcolor{LightBlue}{0.68 0.85 0.9}
82
%\newrgbcolor{Dgreen}{0  0.6 0.4}
83
%%\newrgbcolor{DBlue}{0  0 0.5}
84
%\newrgbcolor{DBlue}{0  0 0.6}
85
%\newrgbcolor{Dblue}{0  0 0.6}
86
%%----------------------
87
%%% MORE Color definitions
88
%\newrgbcolor{DarkGray}{.284 .210 .410}
89
%\newrgbcolor{Violet}{.2 .2  .9}
90

    
91
%---------------------
92

    
93
\mode<presentation>
94
{
95
  \usetheme{Warsaw}
96
  % or ...
97

    
98
  \setbeamercovered{transparent}
99
  % or whatever (possibly just delete it)
100
}
101

    
102

    
103
\title{Towards an Unbounded Implicit Arithmetic for\\
104
the Polynomial Hierarchy
105
}
106

    
107
\author{Patrick Baillot and Anupam Das}
108
\institute{CNRS / ENS Lyon}
109

    
110

    
111
\begin{document}
112
\maketitle
113

    
114

    
115
\begin{frame}
116
  \frametitle{Introduction}
117
 
118
 2 cousin approaches to logical characterization of complexity classes:
119
 
120
\bigskip 
121

    
122
 \begin{tabular}{l|l}
123
 \BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity  (91 --)}\\
124
      & \ICC{(ICC)}\\
125
 \hline
126
 &\\
127
 & function algebras\\
128
 & types/proofs-as-programs\\
129
 & arithmetics / logics\\
130
 & \\
131
 large variety of & resource-free characterizations of\\
132
 complexity classes & complexity classes (e.g. ramification)\\
133
 &\\
134
 corresp. with & extensions to programming languages\\
135
 \textit{proof-complexity} &
136
 \end{tabular}
137
  \end{frame}
138

    
139
%%%%%%%%%%%%%%%%%%%%%%%%%%%
140

    
141
\begin{frame}
142
  \frametitle{Introduction}
143
 
144
$$  \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$
145
 
146
\bigskip 
147

    
148
 \begin{tabular}{l|l}
149
 \BA{Bounded arithmetic}  \qquad \qquad & \ICC{Implicit computational complexity}\\
150
 \hline
151
 &\\
152
  Buss ($S_1$): & Leivant (intrinsic theories): \\
153
  $\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\
154
  &\\
155
  FP, FPH & FP
156
  \end{tabular}
157
  \end{frame}
158
  
159
  %%%%%%%%%%%%%%%%%%%%%%%%%%%
160

    
161
\begin{frame}
162
  \frametitle{{A current limitation of ICC logics}}
163
 
164
 \begin{itemize}
165
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}}
166
\item in particular, {\ICC{ICC logics}}  not so satisfactory for non-deterministic classes
167

    
168
e.g. NP, PH (polynomial hierarchy) \dots
169

    
170
 \end{itemize}
171
 \end{frame}
172
 
173
 %%%%%%%%%%%%%%%%%%%%%%%%%%%
174

    
175
\begin{frame}
176
  \frametitle{Recap : the polynomial hierarchy}
177
 
178
 \begin{itemize}
179
\item  to be done: definition \dots
180
 \end{itemize}
181
 \end{frame}
182

    
183
%%%%%%%%%%%%%%%%%%%%%%%%%%%
184

    
185
\begin{frame}
186
  \frametitle{Our goal}
187
 
188
 design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
189
 
190
 \medskip 
191
 
192
 expected benefits:
193
 \begin{itemize}
194
\item   bridge  {\BA{bounded arithmetic}}  and {\ICC{ICC logics}}
195
\item enlarge the toolbox  of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
196
\end{itemize}
197
 \end{frame}
198

    
199
%%%%%%%%%%%%%%%%%%%%%%%%%%%
200

    
201
\begin{frame}
202
  \frametitle{Methodology}
203
 
204
 We want to use:
205
 \begin{itemize}
206
\item {\ICC{ramification}} (distinction safe / normal arguments) from   {\ICC{ICC}}
207
   \item induction calibrated by logical complexity, from  {\BA{bounded arithmetic}}
208
\end{itemize}
209
 \end{frame}
210

    
211
%%%%%%%%%%%%%%%%%%%%%%%%%%%
212

    
213
\begin{frame}
214
  \frametitle{Ingredients for a logical characterization}
215
 
216
 \begin{itemize}
217
\item  choose a way to \textit{specify} functions
218
\item choose a logic:
219

    
220
logical system + axioms, induction scheme
221
\item prove soundness:
222

    
223
realizability-like argument, with a well-chosen \textit{target language}
224
\item prove completeness
225
\end{itemize}
226
 \end{frame}
227

    
228
%%%%%%%%%%%%%%%%%%%%%%%%%%%
229

    
230
\begin{frame}
231
  \frametitle{Specifying the functions}
232
 
233
 Various approaches to specify a function $f$:
234
 \begin{itemize}
235
\item   {\BA{formula specification}} (bounded arithmetic):
236

    
237
a formula $A_f$ defines the graph of $f$
238
\item {\ICC{equational specification}} (Leivant: intrinsic theories)
239

    
240
conjunction of first-order equations defining $f$
241

    
242
\item applicative theories (Cantini, Kahle-Oitavem \dots)
243

    
244
combinatory term computing $f$
245
\item \dots
246

    
247
\end{itemize}
248
 \end{frame}
249

    
250
\begin{frame}
251
  \frametitle{Our logical system}
252
 
253
 Ramified classical logic (\RC):
254
 \begin{itemize}
255
\item  1st-order classical logic \dots
256
\item \dots over the language:
257
\begin{itemize}
258
 \item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$
259
 \item predicates: $\leq, {\ICC{N_0}},  {\ICC{N_1}}$
260
\end{itemize}
261
\item with axioms:
262
 \begin{itemize}
263
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
264
\smallskip
265

    
266
notation:
267

    
268
$\begin{array}{lcl}
269
\succ{0}x &:=& 2\cdot x\\
270
\succ{1}x & :=& \succ{}(2\cdot x)
271
\end{array}
272
 $
273
      \item polynomial induction IND:
274
 \end{itemize}
275
 \end{itemize}
276
 {\small $$    A(0) 
277
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) )
278
\rightarrow  (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) 
279
\rightarrow  \forall x^{\normal} . A(x) $$
280
   }
281
   
282
   Define all that within a sequent calculus system.
283
   
284
  $\mathcal{C}$-\RC\  is \RC\ with IND restricted to formulas $A$ belonging to the class  $\mathcal{C}$ of formulas.
285
 \end{frame}
286

    
287
%%%%%%%%%%%%%%%%%%%%%%%%%%%
288

    
289
\begin{frame}
290
  \frametitle{Classification of quantifications}
291
 
292
 Write $Q$ for $\forall$ or $\exists$.
293
 \begin{itemize}
294
\item   safe ($N_0$)/normal ($N_1$) quantifiers:
295

    
296
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$
297
\item sharply bounded quantifiers:
298
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$
299
\end{itemize}
300
 \end{frame}
301

    
302
%%%%%%%%%%%
303
\begin{frame}
304
  \frametitle{Quantifier hierarchy}
305
 
306
 We define:
307
 \begin{itemize}
308
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers,
309
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers,
310
\item  $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers,
311
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$.
312
\end{itemize}
313
\end{frame}
314

    
315
%%%%%%%%%%%%%%%%%%%%%%%%%%%
316

    
317
\begin{frame}
318
  \frametitle{Result and work-in-progress}
319
 
320
 \begin{theorem}[Soundness]
321
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
322
 \end{theorem}
323
 
324
  \begin{conjecture}[Soundness]
325
  If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
326
 \end{conjecture}
327

    
328
\end{frame}
329

    
330
\end{document}
331

    
332
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
333
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
334
%----------
335

    
336
%%%%%%%%%%%%%%%%%%%%%%%%%%%
337

    
338
\begin{frame}
339
  \frametitle{}
340
 
341
 \begin{itemize}
342
\item   \end{itemize}
343
 \end{frame}
344

    
345
%%%%%%%%%%%%%%%%%%%%%%%%%%%