root / CSL17 / DICE2017_TALK / unboundedArithmetic.tex @ 189
Historique | Voir | Annoter | Télécharger (8,44 ko)
1 |
|
---|---|
2 |
%\documentclass[pdf, pleasingblue,slideColor,colorBG]{prosper} |
3 |
\documentclass{beamer} |
4 |
\usepackage{amsfonts,latexsym,amssymb, amsmath} |
5 |
\usepackage{stmaryrd} |
6 |
\usepackage{graphicx} |
7 |
\usepackage{eepic} |
8 |
\usepackage[dvips]{epsfig} |
9 |
%\usepackage{psfig} |
10 |
%\input head.tex |
11 |
\usepackage{proof,bussproofs} |
12 |
%\usepackage{ desseins_s} |
13 |
|
14 |
|
15 |
%\usepackage{microtype}%if unwanted, comment out or use option "draft" |
16 |
%\usepackage[dvipsnames]{xcolor} |
17 |
|
18 |
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory |
19 |
|
20 |
%\bibliographystyle{plainurl}% the recommended bibstyle |
21 |
|
22 |
%\usepackage[lutzsyntax]{virginialake} |
23 |
\input{ph-macros} |
24 |
|
25 |
|
26 |
|
27 |
\setbeamercolor{block title}{bg=blue!10} |
28 |
\setbeamercolor{block body}{bg=blue!10} |
29 |
\definecolor{monred}{HTML}{9D0909} |
30 |
%\definecolor{monbleu}{RVB}{0,0,1} |
31 |
\def\red#1{\color{red}{#1}} |
32 |
\def\blue#1{\color{blue}{#1}} |
33 |
\def\green#1{\color{green}{#1}} |
34 |
\def\black{} |
35 |
\def\BA#1{\color{red}{#1}} |
36 |
\def\ICC#1{\color{blue}{#1}} |
37 |
|
38 |
|
39 |
%%%%%%%%%%%%%ENVIRONMENTS AND THEOREM-STYLES %%%%%%%%%%%%%%%%%% |
40 |
%\def\un#1{\underline{#1}} |
41 |
%\def\point#1{{\bf #1.}} |
42 |
%%\newcommand{\etq}[1]{\mbox{\scriptsize\bf #1}} |
43 |
%\newcommand{\etq}[1]{\mbox{{\bf #1}}} |
44 |
%\newcommand{\Rulone}[1]{% |
45 |
% \begin{center} |
46 |
% \makebox[12cm]{\hspace*{\fill} |
47 |
% \begin{minipage}[c]{6cm} #1 \end{minipage} \hspace*{\fill} |
48 |
% } |
49 |
% \end{center} |
50 |
% } |
51 |
% |
52 |
%\newcommand{\centra}[1]{\begin{center} #1 \end{center}} |
53 |
% |
54 |
%\newcommand{\Rultwo}[2]{% |
55 |
% \begin{center} |
56 |
% \makebox[12cm]{ |
57 |
% \makebox[6cm]{\begin{minipage}[c]{6cm} #1 \end{minipage}} \hspace{20pt} |
58 |
% \makebox[6cm]{\begin{minipage}[c]{6cm} #2 \end{minipage}} |
59 |
% } |
60 |
% \end{center} |
61 |
% } |
62 |
%\newcounter{ex} |
63 |
%%\newtheorem{example}[ex]{Example} |
64 |
% |
65 |
% |
66 |
%\def\para#1{\paragraph{#1}} |
67 |
%\newtheorem{theo}{Theorem} |
68 |
%\newtheorem{de}{Definition} |
69 |
%\newtheorem{prop}[theo]{Proposition} |
70 |
%\newtheorem{lem}[theo]{Lemma} |
71 |
%\newtheorem{Cor}[theo]{Corollary} |
72 |
%\newtheorem{remark}[theo]{Remark} |
73 |
%\newcounter{pb} |
74 |
%\newtheorem{problem}[pb]{Problem} |
75 |
%\newenvironment{proof}{\noindent{\bfseries Proof :}}{\hbox{}\hfill$\Box$} |
76 |
|
77 |
%--------------------- |
78 |
%% Definition of new colors |
79 |
%\newrgbcolor{LemonChiffon}{1. 0.98 0.8} |
80 |
% |
81 |
%\newrgbcolor{LightBlue}{0.68 0.85 0.9} |
82 |
%\newrgbcolor{Dgreen}{0 0.6 0.4} |
83 |
%%\newrgbcolor{DBlue}{0 0 0.5} |
84 |
%\newrgbcolor{DBlue}{0 0 0.6} |
85 |
%\newrgbcolor{Dblue}{0 0 0.6} |
86 |
%%---------------------- |
87 |
%%% MORE Color definitions |
88 |
%\newrgbcolor{DarkGray}{.284 .210 .410} |
89 |
%\newrgbcolor{Violet}{.2 .2 .9} |
90 |
|
91 |
%--------------------- |
92 |
|
93 |
\mode<presentation> |
94 |
{ |
95 |
\usetheme{Warsaw} |
96 |
% or ... |
97 |
|
98 |
\setbeamercovered{transparent} |
99 |
% or whatever (possibly just delete it) |
100 |
} |
101 |
|
102 |
|
103 |
\title{Towards an Unbounded Implicit Arithmetic for\\ |
104 |
the Polynomial Hierarchy |
105 |
} |
106 |
|
107 |
\author{Patrick Baillot and Anupam Das} |
108 |
\institute{CNRS / ENS Lyon} |
109 |
|
110 |
|
111 |
\begin{document} |
112 |
\maketitle |
113 |
|
114 |
|
115 |
\begin{frame} |
116 |
\frametitle{Introduction} |
117 |
|
118 |
2 cousin approaches to logical characterization of complexity classes: |
119 |
|
120 |
\bigskip |
121 |
|
122 |
\begin{tabular}{l|l} |
123 |
\BA{Bounded arithmetic (86 -- )} & \ICC{Implicit computational complexity (91 --)}\\ |
124 |
& \ICC{(ICC)}\\ |
125 |
\hline |
126 |
&\\ |
127 |
& function algebras\\ |
128 |
& types/proofs-as-programs\\ |
129 |
& arithmetics / logics\\ |
130 |
& \\ |
131 |
large variety of & resource-free characterizations of\\ |
132 |
complexity classes & complexity classes (e.g. ramification)\\ |
133 |
&\\ |
134 |
corresp. with & extensions to programming languages\\ |
135 |
\textit{proof-complexity} & |
136 |
\end{tabular} |
137 |
\end{frame} |
138 |
|
139 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
140 |
|
141 |
\begin{frame} |
142 |
\frametitle{Introduction} |
143 |
|
144 |
$$ \mbox{"\textit{$f$ is provably total in system} XXX"} \Leftrightarrow \quad f \in \mbox{ complexity class YYY }$$ |
145 |
|
146 |
\bigskip |
147 |
|
148 |
\begin{tabular}{l|l} |
149 |
\BA{Bounded arithmetic} \qquad \qquad & \ICC{Implicit computational complexity}\\ |
150 |
\hline |
151 |
&\\ |
152 |
Buss ($S_1$): & Leivant (intrinsic theories): \\ |
153 |
$\forall x, {\BA{\exists y \leq t}} . \; A_f(x,y)$ & $\forall x. N_1(x) \rightarrow N_0(f(x))$\\ |
154 |
&\\ |
155 |
FP, FPH & FP |
156 |
\end{tabular} |
157 |
\end{frame} |
158 |
|
159 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
160 |
|
161 |
\begin{frame} |
162 |
\frametitle{{A current limitation of ICC logics}} |
163 |
|
164 |
\begin{itemize} |
165 |
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}} |
166 |
\item in particular, {\ICC{ICC logics}} not so satisfactory for non-deterministic classes |
167 |
|
168 |
e.g. NP, PH (polynomial hierarchy) \dots |
169 |
|
170 |
\end{itemize} |
171 |
\end{frame} |
172 |
|
173 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
174 |
|
175 |
\begin{frame} |
176 |
\frametitle{Recap : the polynomial hierarchy} |
177 |
|
178 |
\begin{itemize} |
179 |
\item to be done: definition \dots |
180 |
\end{itemize} |
181 |
\end{frame} |
182 |
|
183 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
184 |
|
185 |
\begin{frame} |
186 |
\frametitle{Our goal} |
187 |
|
188 |
design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH |
189 |
|
190 |
\medskip |
191 |
|
192 |
expected benefits: |
193 |
\begin{itemize} |
194 |
\item bridge {\BA{bounded arithmetic}} and {\ICC{ICC logics}} |
195 |
\item enlarge the toolbox of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC) |
196 |
\end{itemize} |
197 |
\end{frame} |
198 |
|
199 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
200 |
|
201 |
\begin{frame} |
202 |
\frametitle{Methodology} |
203 |
|
204 |
We want to use: |
205 |
\begin{itemize} |
206 |
\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}} |
207 |
\item induction calibrated by logical complexity, from {\BA{bounded arithmetic}} |
208 |
\end{itemize} |
209 |
\end{frame} |
210 |
|
211 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
212 |
|
213 |
\begin{frame} |
214 |
\frametitle{Ingredients for a logical characterization} |
215 |
|
216 |
\begin{itemize} |
217 |
\item choose a way to \textit{specify} functions |
218 |
\item choose a logic: |
219 |
|
220 |
logical system + axioms, induction scheme |
221 |
\item prove soundness: |
222 |
|
223 |
realizability-like argument, with a well-chosen \textit{target language} |
224 |
\item prove completeness |
225 |
\end{itemize} |
226 |
\end{frame} |
227 |
|
228 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
229 |
|
230 |
\begin{frame} |
231 |
\frametitle{Specifying the functions} |
232 |
|
233 |
Various approaches to specify a function $f$: |
234 |
\begin{itemize} |
235 |
\item {\BA{formula specification}} (bounded arithmetic): |
236 |
|
237 |
a formula $A_f$ defines the graph of $f$ |
238 |
\item {\ICC{equational specification}} (Leivant: intrinsic theories) |
239 |
|
240 |
conjunction of first-order equations defining $f$ |
241 |
|
242 |
\item applicative theories (Cantini, Kahle-Oitavem \dots) |
243 |
|
244 |
combinatory term computing $f$ |
245 |
\item \dots |
246 |
|
247 |
\end{itemize} |
248 |
\end{frame} |
249 |
|
250 |
\begin{frame} |
251 |
\frametitle{Our logical system} |
252 |
|
253 |
Ramified classical logic (\RC): |
254 |
\begin{itemize} |
255 |
\item 1st-order classical logic \dots |
256 |
\item \dots over the language: |
257 |
\begin{itemize} |
258 |
\item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$ |
259 |
\item predicates: $\leq, {\ICC{N_0}}, {\ICC{N_1}}$ |
260 |
\end{itemize} |
261 |
\item with axioms: |
262 |
\begin{itemize} |
263 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$) |
264 |
\smallskip |
265 |
|
266 |
notation: |
267 |
|
268 |
$\begin{array}{lcl} |
269 |
\succ{0}x &:=& 2\cdot x\\ |
270 |
\succ{1}x & :=& \succ{}(2\cdot x) |
271 |
\end{array} |
272 |
$ |
273 |
\item polynomial induction IND: |
274 |
\end{itemize} |
275 |
\end{itemize} |
276 |
{\small $$ A(0) |
277 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) ) |
278 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) |
279 |
\rightarrow \forall x^{\normal} . A(x) $$ |
280 |
} |
281 |
|
282 |
Define all that within a sequent calculus system. |
283 |
|
284 |
$\mathcal{C}$-\RC\ is \RC\ with IND restricted to formulas $A$ belonging to the class $\mathcal{C}$ of formulas. |
285 |
\end{frame} |
286 |
|
287 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
288 |
|
289 |
\begin{frame} |
290 |
\frametitle{Classification of quantifications} |
291 |
|
292 |
Write $Q$ for $\forall$ or $\exists$. |
293 |
\begin{itemize} |
294 |
\item safe ($N_0$)/normal ($N_1$) quantifiers: |
295 |
|
296 |
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$ |
297 |
\item sharply bounded quantifiers: |
298 |
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$ |
299 |
\end{itemize} |
300 |
\end{frame} |
301 |
|
302 |
%%%%%%%%%%% |
303 |
\begin{frame} |
304 |
\frametitle{Quantifier hierarchy} |
305 |
|
306 |
We define: |
307 |
\begin{itemize} |
308 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers, |
309 |
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers, |
310 |
\item $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers, |
311 |
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$. |
312 |
\end{itemize} |
313 |
\end{frame} |
314 |
|
315 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
316 |
|
317 |
\begin{frame} |
318 |
\frametitle{Result and work-in-progress} |
319 |
|
320 |
\begin{theorem}[Soundness] |
321 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
322 |
\end{theorem} |
323 |
|
324 |
\begin{conjecture}[Soundness] |
325 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
326 |
\end{conjecture} |
327 |
|
328 |
\end{frame} |
329 |
|
330 |
\end{document} |
331 |
|
332 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
333 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
334 |
%---------- |
335 |
|
336 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
337 |
|
338 |
\begin{frame} |
339 |
\frametitle{} |
340 |
|
341 |
\begin{itemize} |
342 |
\item \end{itemize} |
343 |
\end{frame} |
344 |
|
345 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |