Révision 189 CSL17/DICE2017_TALK/unboundedArithmetic.tex
unboundedArithmetic.tex (revision 189) | ||
---|---|---|
163 | 163 |
|
164 | 164 |
\begin{itemize} |
165 | 165 |
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}} |
166 |
\item in particular, not so satisfactory for non-deterministic classes |
|
166 |
\item in particular, {\ICC{ICC logics}} not so satisfactory for non-deterministic classes
|
|
167 | 167 |
|
168 | 168 |
e.g. NP, PH (polynomial hierarchy) \dots |
169 | 169 |
|
... | ... | |
185 | 185 |
\begin{frame} |
186 | 186 |
\frametitle{Our goal} |
187 | 187 |
|
188 |
design an { \ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
|
|
188 |
design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH |
|
189 | 189 |
|
190 | 190 |
\medskip |
191 | 191 |
|
192 | 192 |
expected benefits: |
193 | 193 |
\begin{itemize} |
194 | 194 |
\item bridge {\BA{bounded arithmetic}} and {\ICC{ICC logics}} |
195 |
\item enlarge the toolbox {\ICC{ICC logics}} of , by exploring the power of quantification
|
|
195 |
\item enlarge the toolbox of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
|
|
196 | 196 |
\end{itemize} |
197 | 197 |
\end{frame} |
198 | 198 |
|
... | ... | |
203 | 203 |
|
204 | 204 |
We want to use: |
205 | 205 |
\begin{itemize} |
206 |
\item {\ICC{ramification}}
|
|
207 |
\item
|
|
206 |
\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}}
|
|
207 |
\item induction calibrated by logical complexity, from {\BA{bounded arithmetic}}
|
|
208 | 208 |
\end{itemize} |
209 | 209 |
\end{frame} |
210 | 210 |
|
211 |
|
|
212 |
\end{document} |
|
213 |
|
|
214 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
215 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
216 |
%---------- |
|
217 |
|
|
218 | 211 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
219 | 212 |
|
220 | 213 |
\begin{frame} |
221 |
\frametitle{} |
|
214 |
\frametitle{Ingredients for a logical characterization}
|
|
222 | 215 |
|
223 | 216 |
\begin{itemize} |
224 |
\item \end{itemize} |
|
217 |
\item choose a way to \textit{specify} functions |
|
218 |
\item choose a logic: |
|
219 |
|
|
220 |
logical system + axioms, induction scheme |
|
221 |
\item prove soundness: |
|
222 |
|
|
223 |
realizability-like argument, with a well-chosen \textit{target language} |
|
224 |
\item prove completeness |
|
225 |
\end{itemize} |
|
225 | 226 |
\end{frame} |
226 | 227 |
|
227 | 228 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
228 | 229 |
|
229 | 230 |
\begin{frame} |
230 |
\frametitle{Introduction}
|
|
231 |
\frametitle{Specifying the functions}
|
|
231 | 232 |
|
233 |
Various approaches to specify a function $f$: |
|
232 | 234 |
\begin{itemize} |
233 |
\item \textit{Implicit computational complexity} (ICC) :
|
|
235 |
\item {\BA{formula specification}} (bounded arithmetic):
|
|
234 | 236 |
|
235 |
characterizing complexity classes by programming languages / calculi without explicit bounds, |
|
237 |
a formula $A_f$ defines the graph of $f$ |
|
238 |
\item {\ICC{equational specification}} (Leivant: intrinsic theories) |
|
236 | 239 |
|
237 |
but instead |
|
238 |
by restricting the constructions %of the language. |
|
239 |
\item either theory-oriented or certification-oriented |
|
240 |
\item often conveniently formulated by: |
|
241 |
|
|
242 |
(i) a general programming language, (ii) a criterion on programs |
|
243 |
\end{itemize} |
|
244 |
\end{frame} |
|
245 |
|
|
246 |
%%%%%%%%%%%%%%%%%%%%%% |
|
247 |
\begin{frame} |
|
248 |
\frametitle{Various approaches to ICC} |
|
240 |
conjunction of first-order equations defining $f$ |
|
249 | 241 |
|
242 |
\item applicative theories (Cantini, Kahle-Oitavem \dots) |
|
250 | 243 |
|
251 |
\begin{itemize} |
|
252 |
\item ramified recursion (Leivant, Leivant-Marion) / safe recursion (Bellantoni-Cook) |
|
253 |
% \item restrictions on second-order logic (taming comprehension rule) (Leivant) |
|
254 |
\item variants of linear logic (light logics) \textbf{this talk} |
|
255 |
%\item \emph{read-only} functional languages (Jones) |
|
256 |
\item interpretation methods |
|
257 |
\item \dots |
|
258 |
\end{itemize} |
|
244 |
combinatory term computing $f$ |
|
245 |
\item \dots |
|
259 | 246 |
|
260 |
\end{frame} |
|
261 |
|
|
262 |
%%%%%%%%%%%%%%%%%%%%%% |
|
263 |
\begin{frame} |
|
264 |
\frametitle{ICC vs. complexity analysis} |
|
265 |
|
|
266 |
specificities of ICC w.r.t. automatic complexity analysis: |
|
267 |
\begin{itemize} |
|
268 |
\item complexity certificate (e.g. type) |
|
269 |
\item modular |
|
270 |
\end{itemize} |
|
271 |
|
|
272 |
but |
|
273 |
|
|
274 |
\begin{itemize} |
|
275 |
\item only rough complexity bounds |
|
276 |
\item less general analysis (specific programming discipline) |
|
277 | 247 |
\end{itemize} |
278 |
\end{frame}
|
|
248 |
\end{frame} |
|
279 | 249 |
|
280 |
|
|
281 |
\end{document} |
|
282 |
|
|
283 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
284 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
285 |
%---------- |
|
286 |
|
|
287 |
\begin{frame}\frametitle{The proofs-as-programs viewpoint} |
|
288 |
|
|
289 |
\begin{itemize} |
|
290 |
\item our reference language here is $\la$-calculus |
|
291 |
|
|
292 |
untyped $\la$-calculus is Turing-complete |
|
293 |
\item type systems can guarantee termination |
|
294 |
|
|
295 |
ex: system F (polymorphic types) |
|
296 |
%\end{itemize} |
|
297 |
% |
|
298 |
%\end{frame} |
|
299 |
% |
|
300 |
%---------- |
|
301 |
%\begin{frame} \frametitle{} |
|
302 |
|
|
303 |
%\begin{itemize} |
|
304 |
\item proofs-as-programs correspondence |
|
305 |
%Curry-Howard correspondence |
|
306 |
\begin{tabular}{ccc} |
|
307 |
proof & = & type derivation \\ |
|
308 |
normalization & = & execution \\ |
|
309 |
intuitionistic logic & $\leftrightarrow$ & system F |
|
310 |
\end{tabular} |
|
311 |
\item some characteristics of $\la$-calculus: |
|
312 |
|
|
313 |
higher-order types |
|
314 |
|
|
315 |
no distinction between data / program |
|
316 |
\end{itemize} |
|
317 |
\end{frame} |
|
318 |
|
|
319 |
%---------- |
|
320 |
\begin{frame} \frametitle{Linear logic} |
|
321 |
|
|
322 |
\begin{itemize} |
|
323 |
\item linear logic (LL): |
|
324 |
|
|
325 |
fine-grained decomposition of intuitionistic logic |
|
326 |
|
|
327 |
duplication is controlled with a specific connective $\bs$ (\textit{exponential}) |
|
328 |
\item variants of linear logic with different rules for |
|
329 |
$\bs$ have bounded complexity: \textit{light logics} |
|
330 |
|
|
331 |
these logics (or subsystems) can be used as type systems for $\la$-calculus |
|
332 |
|
|
333 |
thus: |
|
334 |
|
|
335 |
(i) general language= $\lambda$-calculus, (ii) criterion= typability |
|
336 |
\end{itemize} |
|
337 |
\end{frame} |
|
338 |
|
|
339 |
%---------- |
|
340 |
\begin{frame} \frametitle{Outline of the talk} |
|
341 |
|
|
342 |
%\begin{itemize} |
|
343 |
%\item Background on $\la$-calculus and system F |
|
344 |
%\item The type system DLAL |
|
345 |
%\item Relating the Bellantoni-Cook algebra and light linear logic |
|
346 |
%\item Conclusion |
|
347 |
%\end{itemize} |
|
348 |
\begin{enumerate} |
|
349 |
\item a recap on $\lambda$-calculus and system F |
|
350 |
\item elementary linear logic (ELL): elementary complexity |
|
351 |
\item light linear logic (LLL): Ptime complexity |
|
352 |
\item other linear logic variants |
|
353 |
\item conclusion |
|
354 |
\end{enumerate} |
|
355 |
\end{frame} |
|
356 |
|
|
357 |
%----------- |
|
358 |
|
|
359 |
\section{A recap on $\lambda$-calculus and system F} |
|
360 |
%---------- |
|
361 |
\begin{frame} \frametitle{$\lambda$-calculus} |
|
362 |
|
|
363 |
\begin{itemize} |
|
364 |
\item $\lambda$-terms: |
|
365 |
$$t, u::= x \;|\; \la x. t \; |\; t\; u$$ |
|
366 |
%$$t, u::= x \;|\; \la x. t \; |\; (t\; u)$$ |
|
367 |
|
|
368 |
\begin{tabular}{cl} |
|
369 |
notations: &$\la x_1 x_2. t$ \quad for $\la x_1. \la x_2.t$\\ |
|
370 |
& $(t\; u \; v)$ \quad for $((t\; u)\;v)$\\ |
|
371 |
& substitution: $t[u/ x]$ |
|
372 |
\end{tabular} |
|
373 |
\item |
|
374 |
$\beta$-reduction: |
|
375 |
|
|
376 |
$\xrightarrow{1}$ relation obtained by context-closure of: |
|
377 |
$$ ((\la x. t) u) \xrightarrow{1} t[u/ x]$$ |
|
378 |
|
|
379 |
$\rightarrow$ reflexive and transitive closure of $\xrightarrow{1}$. |
|
380 |
\end{itemize} |
|
381 |
\end{frame} |
|
382 |
|
|
383 |
%---------- |
|
384 |
\begin{frame} \frametitle{Typed $\lambda$-terms} |
|
385 |
system F types: |
|
386 |
$$T, U::= \alpha \; | \; T \rightarrow U \;|\; \forall \al . T$$ |
|
387 |
|
|
388 |
simple types: without $\forall$ |
|
389 |
|
|
390 |
\medskip |
|
391 |
|
|
392 |
simply typed terms, in Church-style: |
|
393 |
$$ |
|
394 |
x^T |
|
395 |
\quad\quad |
|
396 |
(\la x^T. M^U)^{T\rightarrow U} |
|
397 |
\quad\quad |
|
398 |
((M^{T\rightarrow U}) N^T)^U |
|
399 |
$$ |
|
400 |
%$$ |
|
401 |
%(M^U)^{\forall \alpha.U} |
|
402 |
%\quad\quad |
|
403 |
%((M^{\forall\alpha. U})T)^{U[T/\alpha]} |
|
404 |
%$$ |
|
405 |
%with: in $\La \alpha. M^U$, |
|
406 |
%$\alpha$ not free in types of |
|
407 |
%free term variables of $M$ %(the {\em eigenvariable condition}). |
|
408 |
|
|
409 |
\end{frame} |
|
410 |
|
|
411 |
%---------- |
|
412 |
%---------- |
|
413 |
\begin{frame} \frametitle{Proofs-programs correspondence (Curry-Howard)} |
|
414 |
|
|
415 |
\begin{tabular}{ccc} |
|
416 |
\textbf{typed term} &$\Rightarrow$& \textbf{2nd-order intuitionistic}\\ |
|
417 |
&&\quad \textbf{ logic proof}\\ |
|
418 |
&&\\ |
|
419 |
type && formula\\ |
|
420 |
&&\\ |
|
421 |
$M^B$, with & &proof of $A_1, \dots, A_n \vdash B$\\ |
|
422 |
free variables $x_i:A_i$, $1\leq i \leq n$&&\\ |
|
423 |
&&\\ |
|
424 |
$\beta$-reduction of term && normalization of proof\\ |
|
425 |
&& (cut elimination) |
|
426 |
\end{tabular} |
|
427 |
\end{frame} |
|
428 |
|
|
429 |
|
|
430 |
%---------- |
|
431 |
\begin{frame} \frametitle{Some types and data types} |
|
432 |
$$\begin{array}{lcl} |
|
433 |
\mbox{Polymorphic identity:}&&\\ |
|
434 |
%{\blue \La \al. \la x^{\al}. x }&:& \forall \al. (\al \fl \al)\\ |
|
435 |
{\blue \la x^{\al}. x }&:& \forall \al. (\al \fl \al)\\ |
|
436 |
&&\\ |
|
437 |
\mbox{Church unary integers:}&&\\ |
|
438 |
N^F & =& \forall \al. (\al \fl \al) \fl (\al \fl \al) \\ |
|
439 |
\mbox{example}&&\\ |
|
440 |
% {\blue \underline{2}}&{\blue =}& {\blue \La \al. \la f^{\al\fl \al}.\la x^{\al}. (f\; (f \; x))^{\al}: N }\\ |
|
441 |
%{\blue \underline{2} }&{\blue =}& {\blue \la f^{\al\fl \al}.\la x^{\al}. (f)\; (f) \; x: N }\\ |
|
442 |
\underline{2} &{\blue =}& {\blue \la f^{\al\fl \al}.\la x^{\al}. (f\; (f \; x)): N^F }\\ |
|
443 |
\mbox{Church binary words:} &&\\ |
|
444 |
W^F & =& \forall \al. (\al \fl \al) \fl (\al \fl \al) \fl (\al \fl \al)\\ |
|
445 |
\mbox{example}&&\\ |
|
446 |
% {\blue \underline{<1,1,0>}}&{\blue =}& {\blue \La \al. \la o^{\al\fl \al}.\la z^{\al\fl \al}.\la x^{\al}. (o\; (o \; (z\; x)))^{\al}: W }\\ |
|
447 |
% {\blue \underline{<1,1,0>} }&{\blue =}& {\blue \la o^{\al\fl \al}.\la z^{\al\fl \al}.\la x^{\al}. (o)\; (o) \; (z)\; x : W }\\ |
|
448 |
\underline{<1,1,0>} &{\blue =}& {\blue \la s_0^{\al\fl \al}.\la s_1^{\al\fl \al}.\la x^{\al}. (s_1\; (s_1 \; (s_0\; x))) : W^F }\\ |
|
449 |
%\end{eqnarray*} |
|
450 |
\end{array} |
|
451 |
$$ |
|
452 |
\end{frame} |
|
453 |
|
|
454 |
|
|
455 |
|
|
456 |
%---------- |
|
457 |
\begin{frame} \frametitle{Iteration } |
|
458 |
|
|
459 |
For each inductive data type an associated iteration principle. |
|
460 |
|
|
461 |
For instance, for $N= \forall \al. (\al \fl \al) \fl (\al \fl \al)$, |
|
462 |
we can define an iterator $\ite$: |
|
463 |
$$ \ite= \la f x n. \; (n \; f \; x) \; : (A \fl A) \fl A \fl N \fl A, \quad \mbox{for any $A$}$$ |
|
464 |
then |
|
465 |
|
|
466 |
$(\ite \; t \; u \; \un{n}) \rightarrow (t\; (t \dots (t\; u)\dots)$ \quad ($n$ times) |
|
467 |
|
|
468 |
\bigskip |
|
469 |
|
|
470 |
\textbf{example:} |
|
471 |
|
|
472 |
|
|
473 |
$double: N \fl N$ |
|
474 |
|
|
475 |
$exp= \la n. (\ite \; double \; \un{1} \; n)\; : N \fl N$ |
|
476 |
|
|
477 |
$tower= \la n. (\ite \; exp \; \un{1} \; n)\; : N \fl N$ |
|
478 |
|
|
479 |
|
|
480 |
|
|
481 |
\end{frame} |
|
482 |
|
|
483 |
%---------- |
|
484 |
|
|
485 |
\begin{frame} \frametitle{Examples of terms} |
|
486 |
|
|
250 |
\begin{frame} |
|
251 |
\frametitle{Our logical system} |
|
487 | 252 |
|
488 |
$$\begin{array}{lll} |
|
489 |
\mbox{concatenation}&&\\ |
|
490 |
%conc &=& \la u^{W}. \la v^{W} .\La \al. \la o. \la z. \la x . (u \; o \; z \;(v \; o\; z \; x))\\ |
|
491 |
conc &=& \la u^{W}. \la v^{W} . \la s_0. \la s_1. \la x . (u \; s_0 \; s_1) \;(v \; s_0\; s_1 \; x)\\ |
|
492 |
&:~ &W\fl W \fl W\\ |
|
493 |
&&\\ |
|
494 |
\mbox{length}&&\\ |
|
495 |
%length&=& \la u^{W}. \La \al. \la f^{\al\fl \al }.( u\; f \; f)^{\al\fl \al}\\ |
|
496 |
length&=& \la u^{W}. \la f^{\al\fl \al }.(u\; f \; f)^{\al\fl \al}\\ |
|
497 |
&:~ &W \fl N\\ |
|
498 |
% \end{array}$$ |
|
499 |
% |
|
500 |
% $$\begin{array}{lll} |
|
501 |
\mbox{\textit{repeated concatenation}}&&\\ |
|
502 |
%mult&=& \la n. \la m. (m \; \la k.\la f.\la x. (n \; f\; (k\; f\; x))) \; \underline{0}&:& ~N \fli N \fm \pa N\\ |
|
503 |
%mult&=& \la n^{N}. \la v^{W}. (n \; (conc \; v)^{W\fl W} ) \; \underline{nil}^W\\ |
|
504 |
rep&=& \la n^{N}. \la v^{W}. [n \; (conc \; v) \; \underline{nil}]^W\\ |
|
505 |
&:& ~N \fl W \fl W\\ |
|
506 |
%&&&&\\ |
|
507 |
%square&& &:&N \fm \pa^{4}N |
|
508 |
\end{array} |
|
509 |
$$ |
|
510 |
\end{frame} |
|
511 |
|
|
512 |
%---------- |
|
513 |
\begin{frame} \frametitle{System F and termination} |
|
514 |
|
|
515 |
\bigskip |
|
516 |
\begin{theo}[Girard] %[Girard 1972] |
|
517 |
If a term is well typed in $F$, then it is strongly normalizable. |
|
518 |
\end{theo} |
|
519 |
|
|
520 |
\bigskip |
|
521 |
|
|
522 |
Thus a type derivation can be seen as a termination witness. |
|
523 |
|
|
524 |
In particular, a term $t: W \fl W$ represents a function on words which terminates |
|
525 |
on all inputs. |
|
526 |
|
|
527 |
\bigskip |
|
528 |
|
|
529 |
%\textbf {Problem:} |
|
530 |
|
|
531 |
Can we refine this system in order to guarantee \textit{feasible} termination, that is to |
|
532 |
say in polynomial time? |
|
533 |
\end{frame} |
|
534 |
|
|
535 |
%--------------- |
|
536 |
|
|
537 |
|
|
538 |
%----------- |
|
539 |
%%\begin{frame} \frametitle{Exponential blow up} |
|
540 |
%\begin{frame} \frametitle{How can exponential blow up occur?} |
|
541 |
% |
|
542 |
%\vspace{-5mm} |
|
543 |
% |
|
544 |
%(thanks to K.~Terui) |
|
545 |
% |
|
546 |
%2 easy ways to cause exponential blow-up: |
|
547 |
%\begin{itemize} |
|
548 |
%\item |
|
549 |
% basic functions: $0: \NN$, \quad $s: \NN \rightarrow \NN$, \quad $+:\NN \rightarrow \NN \rightarrow \NN$. |
|
550 |
%\item exponential blow-up can be caused by: |
|
551 |
%\begin{enumerate} |
|
552 |
% \item iteration-iteration |
|
553 |
%$$\begin{array}{cccccc} |
|
554 |
%\mbox{dbl}(0) &=&0 \qquad \qquad & \mbox{exp}(0)&=&1 \\ |
|
555 |
%\mbox{dbl}(s(x))&=&\mbox{dbl}(x)+2 \qquad & \mbox{exp}(s(x))&=&\mbox{dbl}(\mbox{exp}(x)) |
|
556 |
%\end{array} |
|
557 |
%$$ |
|
558 |
%\item contraction-iteration |
|
559 |
%$$\begin{array}{cccccc} |
|
560 |
%\mbox{dbl}(x) &=&x+x \qquad \qquad & \mbox{exp}(0)&=&1 \\ |
|
561 |
% &&& \mbox{exp}(s(x))&=&\mbox{dbl}(\mbox{exp}(x)) |
|
562 |
%\end{array} |
|
563 |
%$$ |
|
564 |
%\end{enumerate} |
|
565 |
%\vspace{-4mm} |
|
566 |
%\item to keep contraction and iteration, we need to forbid bad combinations of these. |
|
567 |
%\end{itemize} |
|
568 |
% |
|
569 |
%\end{frame} |
|
570 |
|
|
571 |
|
|
572 |
%----------- |
|
573 |
\begin{frame} \frametitle{Linear logic} |
|
574 |
|
|
253 |
Ramified classical logic (\RC): |
|
254 |
\begin{itemize} |
|
255 |
\item 1st-order classical logic \dots |
|
256 |
\item \dots over the language: |
|
575 | 257 |
\begin{itemize} |
576 |
\item Linear logic (LL) arises from the decomposition |
|
577 |
$$A \fli B \equiv \bs A \fm B$$ |
|
578 |
|
|
579 |
\item the $\bs$ modality accounts for duplication (contraction) |
|
580 |
|
|
581 |
\item $!$ satisfies the following principles: |
|
582 |
$$ |
|
583 |
\begin{array}{ccc} |
|
584 |
\bs A \fm \bs A \otimes \bs A \qquad & \infer{ \bs A\vdash \bs B}{A \vdash B} \qquad & \bs A \fm A \\ |
|
585 |
& \bs A \otimes \bs B \fm \bs (A \otimes B) & \bs A \fm \bs \bs A |
|
586 |
\end{array} |
|
587 |
$$ |
|
258 |
\item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$ |
|
259 |
\item predicates: $\leq, {\ICC{N_0}}, {\ICC{N_1}}$ |
|
588 | 260 |
\end{itemize} |
589 |
\end{frame} |
|
590 |
|
|
591 |
\section{Elementary linear logic} |
|
592 |
%----------- |
|
593 |
\begin{frame} \frametitle{Elementary linear logic (ELL) \qquad [Girard95]} |
|
594 |
|
|
595 |
\begin{itemize} |
|
596 |
\item Language of formulas: |
|
597 |
$$ A, B := \alpha \;|\; A \multimap B \;|\; !A \;|\; \forall \alpha. A $$ |
|
598 |
|
|
261 |
\item with axioms: |
|
262 |
\begin{itemize} |
|
263 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$) |
|
599 | 264 |
\smallskip |
600 |
Denote $!^k A$ for $k$ occurrences of $!$. |
|
601 |
\item The system is designed in such a way that the following principles are \textbf{not} provable |
|
602 |
$$ !A \multimap A, \quad !A \multimap !!A$$ |
|
603 |
\item Defined to characterize \textit{elementary time complexity}, that is to say in time bounded by $2_k^{n}$, for arbitrary $k$. |
|
604 |
\end{itemize} |
|
605 |
\end{frame} |
|
606 | 265 |
|
607 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
266 |
notation:
|
|
608 | 267 |
|
609 |
\begin{frame} \frametitle{Elementary linear logic rules} |
|
610 |
|
|
611 |
%{\tiny |
|
612 |
\vspace{-5mm} |
|
613 |
|
|
614 |
\begin{center} |
|
615 |
\begin{tabular}{ll} |
|
616 |
{\infer[\mbox{(Id)}]{ x:A \vdash x:A}{}} & \\[1ex] |
|
617 |
&\\ |
|
618 |
{\infer[\mbox{($\fm$ i)}]{\Gamma \vdash \la x. t: A \fm B } |
|
619 |
{\Gamma, x:A \vdash t:B}} |
|
620 |
|
|
621 |
& |
|
622 |
{\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2 \vdash (t\; u) :B } |
|
623 |
{\Gamma_1 \vdash t:A \fm B & \Gamma_2 \vdash u:A}} |
|
624 |
\\[1ex] |
|
625 |
&\\ |
|
626 |
{\infer[\mbox{(Cntr)}]{x:!A, \Gamma \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:!A,x_2:!A, \Gamma \vdash t:B }} |
|
627 |
& |
|
628 |
{\infer[\mbox{(Weak)}]{\Gamma, x:B\vdash t: A } |
|
629 |
{\Gamma \vdash t:A}} |
|
630 |
|
|
631 |
\\[1ex] |
|
632 |
&\\ |
|
633 |
{\infer[\mbox{($!$ i)}]{x_1:! B_1, \dots, x_n:! B_n \vdash t: ! A } |
|
634 |
{ x_1:B_1, \dots, x_n:B_n \vdash t:A}} |
|
635 |
& |
|
636 |
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B } |
|
637 |
{\Gamma_1 \vdash u: ! A & \Gamma_2, x:! A \vdash t:B}} |
|
638 |
\\[1ex] |
|
639 |
%{\infer[\mbox{($\forall$ i) (*)}]{{ \Gamma \vdash t:\forall \alpha. A}}{{ \Gamma \vdash t:A}}} |
|
640 |
% & |
|
641 |
% {\infer[\mbox{($\forall$ e)}]{\Gamma \vdash t:A[B \slash \al] } |
|
642 |
%{\Gamma \vdash t:\forall \al. A}} |
|
643 |
\end{tabular} |
|
644 |
%} |
|
645 |
\end{center} |
|
646 |
\end{frame} |
|
647 |
|
|
648 |
%---------- |
|
649 |
\begin{frame} \frametitle{Forgetful map from ELL to F} |
|
650 |
|
|
651 |
|
|
652 |
Consider $\eras{(.)}: ELL \rightarrow F$ defined by: |
|
653 |
$$\eras{(\bs A)}= \eras{A},\ \ \ |
|
654 |
\eras{(A\fm B)}=\eras{A} \rightarrow \eras{B}, \quad \eras{(\forall \al. A)}= \forall \al. \eras{A}, \quad \eras{\al}=\al.$$ |
|
655 |
|
|
656 |
\begin{prop} |
|
657 |
If $\Gamma \vdash_{ELL} t:A$ then $t$ is typable in F with type $\eras{A}$. |
|
658 |
\end{prop} |
|
659 |
|
|
660 |
\medskip |
|
661 |
|
|
662 |
If $\eras{A}=T$, say $A$ is a {\emph decoration} of $T$ in ELL. |
|
663 |
\end{frame} |
|
664 |
|
|
665 |
|
|
666 |
|
|
667 |
%---------- |
|
668 |
\begin{frame} \frametitle{Data types in ELL} |
|
669 |
|
|
670 |
\begin{itemize} |
|
671 |
\item |
|
672 |
Church unary integers |
|
673 |
\end{itemize} |
|
674 |
%\begin{center} |
|
675 |
%{\tiny |
|
676 |
%\hspace{-4mm} |
|
677 |
\begin{tabular}{ccc} |
|
678 |
system F: & & ELL: \\ |
|
679 |
$N^F$ &\qquad & $N^{ELL}$ \\ |
|
680 |
$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$ |
|
681 |
& & $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al)$ |
|
682 |
\end{tabular} |
|
683 |
|
|
684 |
%\begin{tabular}{ccc} |
|
685 |
% system F: & & ELL: \\ |
|
686 |
%$N^F$ &\qquad \qquad \qquad \qquad & $N^{ELL}$ \\ |
|
687 |
%$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$ |
|
688 |
%& & $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al)$ |
|
689 |
%\end{tabular} |
|
690 |
%} |
|
691 |
%\end{center} |
|
692 |
\smallskip |
|
693 |
|
|
694 |
{\tiny Example: integer $2$, in F: |
|
695 |
|
|
696 |
$$ \un{2}=\lambda f^{\blue (\al \rightarrow \al)}. \lambda x^{\blue \al}. (f\;(f\; x))~.$$ |
|
697 |
} |
|
698 |
\begin{itemize} |
|
699 |
\item |
|
700 |
Church binary words |
|
701 |
\end{itemize} |
|
702 |
%{\tiny |
|
703 |
\begin{tabular}{cc} |
|
704 |
system F: & ELL: \\ |
|
705 |
$W^F$ & $W^{ELL}$\\ |
|
706 |
{\tiny $\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$} |
|
707 |
& |
|
708 |
{\tiny $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al) \fm \bs(\al \fm \al)$} |
|
709 |
\end{tabular} |
|
710 |
%} |
|
711 |
\smallskip |
|
712 |
|
|
713 |
{\tiny |
|
714 |
Example: $w=\langle 1, 0, 0 \rangle$, in F: |
|
715 |
|
|
716 |
$$ \un{w}=\lambda s_0^{\blue (\al \rightarrow \al)}. \lambda s_1^{\blue (\al \rightarrow \al)}. |
|
717 |
\lambda x^{\blue \al}. (s_1\;(s_0\; (s_0\; x)))~.$$ |
|
718 |
} |
|
719 |
\end{frame} |
|
720 |
|
|
721 |
%---------- |
|
722 |
|
|
723 |
\begin{frame} \frametitle{Representation of functions} |
|
724 |
|
|
725 |
\begin{itemize} |
|
726 |
\item a term $t$ of type $!^k N \fm !^l N$, for some $k$, $l$, represents a function over unary integers |
|
727 |
\item some examples of terms |
|
728 |
$$\begin{array}{lll} |
|
729 |
\mbox{addition}&&\\ |
|
730 |
add &=& \la n m f x. (n\; f) \; (m \; f \; x) \; \\ |
|
731 |
|
|
732 |
&:~ &N\fm N \fm N\\ |
|
733 |
&&\\ |
|
734 |
\mbox{multiplication}&&\\ |
|
735 |
%mult &=& \la n m f . (n\; (m\; f)) \\ |
|
736 |
mult &=& \la n m f . (n\; (m\; f)) \\ |
|
737 |
|
|
738 |
&:~ &N\fm N \fm N\\ |
|
739 |
|
|
740 |
\mbox{squaring}&&\\ |
|
741 |
square &=& \la n f . (n\; (n\; f)) \\ |
|
742 |
|
|
743 |
&:~ &\bs N \fm \bs N\\ |
|
268 |
$\begin{array}{lcl} |
|
269 |
\succ{0}x &:=& 2\cdot x\\ |
|
270 |
\succ{1}x & :=& \succ{}(2\cdot x) |
|
744 | 271 |
\end{array} |
745 |
$$ |
|
746 |
\end{itemize} |
|
747 |
|
|
748 |
%$$\begin{array}{cclcc} |
|
749 |
% N & =& \forall \al. (\al \fm \al) \fli \pa (\al \fm \al)&&\\ |
|
750 |
%&&&&\\ |
|
751 |
%add &=& \la n. \la m .\la f .\la x . (n \; f \;(m \; f \; x))&:~ &N\fm N \fm N\\ |
|
752 |
%&&&&\\ |
|
753 |
%mult&=& \la n. \la m. (m \; \la k.\la f.\la x. (n \; f\; (k\; f\; x))) \; \underline{0}&:& ~N \fli N \fm \pa N\\ |
|
754 |
%mult&=& \la n. \la m. (m \; (add \; n) ) \; \underline{0}&:& ~N \fli N \fm \pa N\\ |
|
755 |
%&&&&\\ |
|
756 |
%square&& &:&N \fm \pa^{4}N |
|
757 |
%\end{array} |
|
758 |
%$$ |
|
759 |
\end{frame} |
|
760 |
|
|
761 |
%---------- |
|
762 |
|
|
763 |
\begin{frame} \frametitle{Iteration in ELL} |
|
764 |
|
|
765 |
recall the iterator $\ite$: |
|
766 |
$$ \ite= \la f {\red x} {\blue n}. \; (n \; f \; x) \; : \bs (A \fm A) \fm {\red \bs A} \fm {\blue N} \fm \bs A$$ |
|
767 |
with $(\ite \; t \; u \; \un{n}) \rightarrow (t\; (t \; \dots (t\; u)\dots))$ \quad ($n$ times) |
|
768 |
|
|
769 |
\smallskip |
|
770 |
|
|
771 |
\textbf{examples:} |
|
772 |
|
|
773 |
$double: N \fm N$ |
|
774 |
|
|
775 |
$exp= (\ite \; double \; \un{1}) : N \fm \bs N$ |
|
776 |
|
|
777 |
remark: $exp$ cannot be iterated; $tower= (\ite \exp \; \un{1})$ non ELL typable. |
|
778 |
|
|
779 |
%$(add \underline{2}): N \fm N$ |
|
780 |
% |
|
781 |
%$double'= \la n. (\ite \; (add \underline{2}) \; \un{0}) \; n\; : N \fm \pa N$ |
|
782 |
% |
|
783 |
%but $double'$ cannot be iterated. |
|
784 |
% |
|
785 |
%\medskip |
|
786 |
|
|
787 |
\end{frame} |
|
788 |
|
|
789 |
|
|
790 |
%---------- |
|
791 |
\begin{frame} \frametitle{From derivations to proof-nets } |
|
792 |
|
|
793 |
\begin{figure} %[ht] |
|
794 |
%\begin{center} |
|
795 |
\includegraphics[angle=90,width=9cm]{SCANS/ELLtranslation.jpg} |
|
796 |
%\end{center} |
|
797 |
\end{figure} |
|
798 |
\end{frame} |
|
799 |
|
|
800 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
801 |
|
|
802 |
\begin{frame} \frametitle{Elementary linear logic rules, again} |
|
803 |
|
|
804 |
%{\tiny |
|
805 |
\vspace{-5mm} |
|
806 |
|
|
807 |
\begin{center} |
|
808 |
\begin{tabular}{ll} |
|
809 |
{\infer[\mbox{(Id)}]{ x:A \vdash x:A}{}} & \\[1ex] |
|
810 |
&\\ |
|
811 |
{\infer[\mbox{($\fm$ i)}]{\Gamma \vdash \la x. t: A \fm B } |
|
812 |
{\Gamma, x:A \vdash t:B}} |
|
813 |
|
|
814 |
& |
|
815 |
{\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2 \vdash (t\; u) :B } |
|
816 |
{\Gamma_1 \vdash t:A \fm B & \Gamma_2 \vdash u:A}} |
|
817 |
\\[1ex] |
|
818 |
&\\ |
|
819 |
{\infer[\mbox{(Cntr)}]{x:!A, \Gamma \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:!A,x_2:!A, \Gamma \vdash t:B }} |
|
820 |
& |
|
821 |
{\infer[\mbox{(Weak)}]{\Gamma, x:B\vdash t: A } |
|
822 |
{\Gamma \vdash t:A}} |
|
823 |
|
|
824 |
\\[1ex] |
|
825 |
&\\ |
|
826 |
{\infer[\mbox{($!$ i)}]{x_1:! B_1, \dots, x_n:! B_n \vdash t: ! A } |
|
827 |
{ x_1:B_1, \dots, x_n:B_n \vdash t:A}} |
|
828 |
& |
|
829 |
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B } |
|
830 |
{\Gamma_1 \vdash u: ! A & \Gamma_2, x:! A \vdash t:B}} |
|
831 |
\\[1ex] |
|
832 |
%{\infer[\mbox{($\forall$ i) (*)}]{{ \Gamma \vdash t:\forall \alpha. A}}{{ \Gamma \vdash t:A}}} |
|
833 |
% & |
|
834 |
% {\infer[\mbox{($\forall$ e)}]{\Gamma \vdash t:A[B \slash \al] } |
|
835 |
%{\Gamma \vdash t:\forall \al. A}} |
|
836 |
\end{tabular} |
|
837 |
%} |
|
838 |
\end{center} |
|
839 |
\end{frame} |
|
840 |
|
|
841 |
|
|
842 |
|
|
843 |
%---------- |
|
844 |
\begin{frame} \frametitle{ELL Proof-Nets } |
|
845 |
|
|
846 |
\vspace{-8mm} |
|
847 |
\begin{figure} %[ht] |
|
848 |
%\begin{center} |
|
849 |
\includegraphics[angle=90,width=10.8cm]{SCANS/ELLproofnets6.jpg} |
|
850 |
|
|
851 |
|
|
852 |
%\end{center} |
|
853 |
%\caption{Lambda terms and Light proof-nets.}\label{schema1} |
|
854 |
|
|
855 |
\end{figure} |
|
856 |
|
|
857 |
|
|
858 |
\textit{depth} of an edge: number of boxes it is contained in. |
|
859 |
|
|
860 |
%\vspace{-1mm} |
|
861 |
|
|
862 |
\textit{depth} of proof-net: maximal depth of its edges. |
|
863 |
\end{frame} |
|
864 |
|
|
865 |
%%%%%%%%% |
|
866 |
\begin{frame} \frametitle{ELL proof-net : example } |
|
867 |
|
|
868 |
%\vspace{-5mm} |
|
869 |
Church integer $\un{3}$: |
|
870 |
|
|
871 |
\vspace{-4mm} |
|
872 |
|
|
873 |
\begin{figure} %[ht] |
|
874 |
%\begin{center} |
|
875 |
\includegraphics[angle=90,width=5cm]{SCANS/examplePNthree.jpg} |
|
876 |
%\end{center} |
|
877 |
\end{figure} |
|
878 |
|
|
879 |
\end{frame} |
|
880 |
|
|
881 |
|
|
882 |
|
|
883 |
%%%%%%%%% |
|
884 |
\begin{frame} \frametitle{ELL proof-net reduction } |
|
885 |
|
|
886 |
\vspace{-6mm} |
|
887 |
\begin{figure} %[ht] |
|
888 |
%\begin{center} |
|
889 |
\includegraphics[angle=90,width=10cm]{SCANS/ELLreduction.jpg} |
|
890 |
%\end{center} |
|
891 |
\end{figure} |
|
892 |
|
|
893 |
\end{frame} |
|
894 |
|
|
895 |
%---------- |
|
896 |
\begin{frame} \frametitle{Methodology} |
|
897 |
|
|
898 |
\begin{itemize} |
|
899 |
\item write programs with ELL typed $\lambda$-terms |
|
900 |
\item evaluate them by: |
|
901 |
|
|
902 |
compiling them into proof-nets, and then performing proof-net reduction |
|
903 |
\item beware: |
|
904 |
\begin{itemize} |
|
905 |
\item proof-net reduction does not exactly match $\beta$-reduction |
|
906 |
\item ELL does not satisfy subject reduction |
|
272 |
$ |
|
273 |
\item polynomial induction IND: |
|
907 | 274 |
\end{itemize} |
908 |
but that's all right for our present goal \dots |
|
909 |
|
|
910 |
More about that in tomorrow's talk, without proof-nets. |
|
911 |
\end{itemize} |
|
912 |
|
|
913 |
\end{frame} |
|
914 |
|
|
915 |
|
|
916 |
%%%%%%%%% |
|
917 |
\begin{frame} \frametitle{ELL proof-net reduction properties} |
|
918 |
|
|
919 |
\begin{itemize} |
|
920 |
\item We have |
|
921 |
\begin{prop}[Stratification] |
|
922 |
The depth of an edge does not change during reduction. |
|
923 |
\end{prop} |
|
924 |
|
|
925 |
Consequence: the depth $d$ of a proof-net does not increase during reduction. |
|
926 |
\item \textbf{Level-by-level reduction strategy}: |
|
927 |
|
|
928 |
$R$ proof-net of depth $d$ |
|
929 |
|
|
930 |
perform reduction successively at depth 0, 1 \dots, $d$. |
|
931 |
|
|
932 |
\end{itemize} |
|
933 |
\end{frame} |
|
934 |
|
|
935 |
%%%%%%%%% |
|
936 |
\begin{frame} \frametitle{Level-by-level reduction of ELL proof-nets} |
|
937 |
|
|
938 |
|
|
939 |
\begin{itemize} |
|
940 |
\item let $R$ be an ELL proof-net of depth $d$ |
|
941 |
|
|
942 |
$|R|_i$ = size at depth $i$ |
|
943 |
|
|
944 |
$|R|$ = total size |
|
945 |
|
|
946 |
round $i$: reduction at depth $i$ |
|
947 |
|
|
948 |
there are $d+1$ rounds for the reduction of $R$ |
|
949 |
|
|
950 |
\item \textbf{what happens during round $i$?} |
|
951 |
\begin{itemize} |
|
952 |
\item $|R|_i$ decreases at each step |
|
953 |
|
|
954 |
thus there are at most $|R|_i$ steps \quad {\blue (size bounds time)} |
|
955 |
\item but $|R|_{i+1}$ can increase at each step, in fact it can double |
|
956 |
\item hence round $i$ can cause an exponential size increase |
|
957 | 275 |
\end{itemize} |
958 |
\item on the whole we have a $2_d^{|R|}$ size increase |
|
959 |
\item this yields a $O(2_d^{|R|})$ bound on the number of steps |
|
960 |
\end{itemize} |
|
961 |
\end{frame} |
|
276 |
{\small $$ A(0) |
|
277 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) ) |
|
278 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) ) |
|
279 |
\rightarrow \forall x^{\normal} . A(x) $$ |
|
280 |
} |
|
281 |
|
|
282 |
Define all that within a sequent calculus system. |
|
283 |
|
|
284 |
$\mathcal{C}$-\RC\ is \RC\ with IND restricted to formulas $A$ belonging to the class $\mathcal{C}$ of formulas. |
|
285 |
\end{frame} |
|
962 | 286 |
|
963 |
%%%%%%%%% |
|
964 |
\begin{frame} \frametitle{ELL complexity results} |
|
287 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
965 | 288 |
|
966 |
%\begin{itemize} |
|
967 |
%\item We get |
|
968 |
\begin{theorem}[Proof-net complexity] |
|
969 |
If $R$ is an ELL proof-net of depth $d$, then it can be reduced to its normal form in |
|
970 |
$O(2_d^{|R|})$ steps. |
|
971 |
|
|
972 |
\end{theorem} |
|
973 |
|
|
974 |
\medskip |
|
975 |
|
|
976 |
\begin{theorem}[Representable functions] |
|
977 |
The functions representable by a term of type $N \fm !^k N$, where $k\geq 0$ , are exactly the elementary time functions. |
|
978 |
|
|
979 |
\end{theorem} |
|
980 |
|
|
981 |
%\end{itemize} |
|
982 |
\end{frame} |
|
983 |
|
|
984 |
%%%%%%%%% |
|
985 |
\begin{frame} \frametitle{Proof of the representability theorem} |
|
986 |
|
|
987 |
\begin{itemize} |
|
988 |
\item $\subseteq$ (soundness): |
|
289 |
\begin{frame} |
|
290 |
\frametitle{Classification of quantifications} |
|
989 | 291 |
|
990 |
if $t: N \fm !^k N$ for some $k$, then $t$ represents an elementary function $f$. |
|
991 |
|
|
992 |
\smallskip |
|
993 |
|
|
994 |
\textbf{proof}: compute $(t \underline{n})$ by proof-net reduction. |
|
995 |
|
|
996 |
\item $\supseteq$ (completeness): |
|
997 |
|
|
998 |
if $f: \mathbb{N} \rightarrow \mathbb{N}$ is an elementary function, then there exists $k$ and $t: N \fm !^k N$ such that $t$ represents $f$. |
|
999 |
|
|
1000 |
\smallskip |
|
1001 |
|
|
1002 |
\textbf{proof}: simulation of $O(2_i^n)$-time bounded Turing machine, for any $i$. |
|
292 |
Write $Q$ for $\forall$ or $\exists$. |
|
293 |
\begin{itemize} |
|
294 |
\item safe ($N_0$)/normal ($N_1$) quantifiers: |
|
1003 | 295 |
|
296 |
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$ |
|
297 |
\item sharply bounded quantifiers: |
|
298 |
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$ |
|
1004 | 299 |
\end{itemize} |
1005 |
\end{frame} |
|
1006 |
%%%%%%%%% |
|
300 |
\end{frame} |
|
1007 | 301 |
|
1008 |
\section{Light linear logic} |
|
1009 |
|
|
1010 |
\begin{frame} \frametitle{Taming the exponential blow-up?} |
|
1011 |
%\begin{frame} \frametitle{Motivation: exponential blow-up} |
|
1012 |
|
|
1013 |
\vspace{-4mm} |
|
1014 |
\begin{figure} %[ht] |
|
1015 |
%\begin{center} |
|
1016 |
\includegraphics[width=2.7cm]{SCANS/example_exponent.jpg} |
|
1017 |
%\end{center} |
|
1018 |
\end{figure} |
|
1019 |
|
|
1020 |
\end{frame} |
|
1021 |
|
|
1022 |
|
|
1023 |
%----------- |
|
1024 |
\begin{frame} \frametitle{Light linear logic (LLL) \qquad [Girard95]} |
|
1025 |
|
|
1026 |
\begin{itemize} |
|
1027 |
\item Language of formulas: |
|
1028 |
$$ A, B := \alpha \;|\; A \multimap B \;|\; \forall \alpha. A \;|\; !A \;|\; {\red \pa A}$$ |
|
1029 |
|
|
1030 |
intuition: $\pa$ a new modality for non-duplicable boxes |
|
1031 |
\item The following principles are still \textbf{not} provable |
|
1032 |
$$ !A \multimap A, \quad !A \multimap !!A$$ |
|
1033 |
\end{itemize} |
|
1034 |
\end{frame} |
|
1035 |
|
|
1036 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1037 |
|
|
1038 |
\begin{frame} \frametitle{Light linear logic rules} |
|
1039 |
|
|
1040 |
\begin{itemize} |
|
1041 |
\item rules (Id), ($\fm$ i), ($\fm$ e), (Cntr), (Weak): as in ELL. |
|
1042 |
\item new rules ($!$ i), ($!$ e), ($\pa$ i), ($\pa$ e): |
|
1043 |
|
|
1044 |
\bigskip |
|
302 |
%%%%%%%%%%% |
|
303 |
\begin{frame} |
|
304 |
\frametitle{Quantifier hierarchy} |
|
1045 | 305 |
|
1046 |
\begin{center} |
|
1047 |
\begin{tabular}{ll} |
|
1048 |
% {\infer[\mbox{(Id)}]{ x:A \vdash x:A}{}} & \\[1ex] |
|
1049 |
% &\\ |
|
1050 |
% {\infer[\mbox{($\fm$ i)}]{\Gamma \vdash \la x. t: A \fm B } |
|
1051 |
% {\Gamma, x:A \vdash t:B}} |
|
1052 |
% |
|
1053 |
% & |
|
1054 |
% {\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2 \vdash (t\; u) :B } |
|
1055 |
% {\Gamma_1 \vdash t:A \fm B & \Gamma_2 \vdash u:A}} |
|
1056 |
%\\[1ex] |
|
1057 |
%&\\ |
|
1058 |
%{\infer[\mbox{(Cntr)}]{x:A, \Gamma \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:!A,x_2:!A, \Gamma \vdash t:B }} |
|
1059 |
%& |
|
1060 |
%{\infer[\mbox{(Weak)}]{\Gamma, x:B\vdash t: A } |
|
1061 |
% {\Gamma \vdash t:A}} |
|
1062 |
% |
|
1063 |
%\\[1ex] |
|
1064 |
%&\\ |
|
1065 |
{\infer[\mbox{($!$ i)}]{x:! B \vdash t: ! A } |
|
1066 |
{ x :B \vdash t:A}} |
|
1067 |
& |
|
1068 |
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B } |
|
1069 |
{\Gamma_1 \vdash u: ! A & \Gamma_2, x:! A \vdash t:B}} |
|
1070 |
\\[1ex] |
|
1071 |
&\\ |
|
1072 |
|
|
1073 |
{\infer[\mbox{($\pa$ i)}]{! \Gamma, \pa \Delta \vdash t: \pa A } |
|
1074 |
{ \Gamma, \Delta \vdash t:A}} |
|
1075 |
& |
|
1076 |
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B } |
|
1077 |
{\Gamma_1 \vdash u: \pa A & \Gamma_2, x: \pa A \vdash t:B}} |
|
1078 |
|
|
1079 |
%{\infer[\mbox{($\pa$ i)}]{x_1:! B_1, \dots, x_i: \pa B_i , \dots, x_n:\pa B_n \vdash t: \pa A } |
|
1080 |
% { x_1:B_1, \dots, x_i: B_i, \dots , x_n:B_n \vdash t:A}} |
|
1081 |
% & |
|
1082 |
%{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B } |
|
1083 |
% {\Gamma_1 \vdash u: \pa A & \Gamma_2, x: \pa A \vdash t:B}} |
|
1084 |
%\\[1ex] |
|
1085 |
|
|
1086 |
%{\infer[\mbox{($\forall$ i) (*)}]{{ \Gamma \vdash t:\forall \alpha. A}}{{ \Gamma \vdash t:A}}} |
|
1087 |
% & |
|
1088 |
% {\infer[\mbox{($\forall$ e)}]{\Gamma \vdash t:A[B \slash \al] } |
|
1089 |
%{\Gamma \vdash t:\forall \al. A}} |
|
1090 |
\end{tabular} |
|
1091 |
%} |
|
1092 |
\end{center} |
|
1093 |
|
|
1094 |
\bigskip |
|
1095 |
where if $\Gamma= x_1:B_1, \dots, x_k:B_k$, |
|
1096 |
|
|
1097 |
$\dagger \Gamma= x_1: \dagger B_1, \dots, x_k: :\dagger B_k$, for $\dagger= !, \pa$. |
|
306 |
We define: |
|
307 |
\begin{itemize} |
|
308 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers, |
|
309 |
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers, |
|
310 |
\item $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers, |
|
311 |
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$. |
|
1098 | 312 |
\end{itemize} |
1099 |
|
|
1100 | 313 |
\end{frame} |
1101 | 314 |
|
1102 |
%---------- |
|
1103 |
\begin{frame} \frametitle{Forgetful map from LLL to ELL} |
|
315 |
%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1104 | 316 |
|
1105 |
|
|
1106 |
Consider $\lte{(.)}: LLL \rightarrow ELL$ defined by: |
|
1107 |
$$\lte{(\pa A)}= ! \lte{A}, \quad \lte{(! A)}= ! \lte{A}$$ |
|
1108 |
and other connectives unchanged. |
|
1109 |
%\eras{(A\fm B)}=\eras{A} \rightarrow \eras{B}, \quad \eras{(\forall \al. A)}= \forall \al. \eras{A}, \quad \eras{\al}=\al.$$ |
|
1110 |
|
|
1111 |
\begin{prop} |
|
1112 |
If $\Gamma \vdash_{LLL} t:A$ then $\lte{\Gamma} \vdash_{ELL} t:\lte{A}$. |
|
1113 |
\end{prop} |
|
1114 |
|
|
1115 |
\end{frame} |
|
1116 |
|
|
1117 |
|
|
1118 |
|
|
1119 |
%---------- |
|
1120 |
\begin{frame} \frametitle{Data types in LLL} |
|
1121 |
|
|
1122 |
\begin{itemize} |
|
1123 |
\item |
|
1124 |
Church unary integers |
|
1125 |
\end{itemize} |
|
1126 |
%\begin{center} |
|
1127 |
%{\tiny |
|
1128 |
%\hspace{-4mm} |
|
1129 |
\begin{tabular}{ccc} |
|
1130 |
system F: & & LLL: \\ |
|
1131 |
$N^F$ &\qquad & $N^{LLL}$ \\ |
|
1132 |
$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$ |
|
1133 |
& & $\forall \al. \bs (\al \fm \al) \fm {\red \pa} (\al \fm \al)$ |
|
1134 |
\end{tabular} |
|
1135 |
|
|
1136 |
%\begin{tabular}{ccc} |
|
1137 |
% system F: & & ELL: \\ |
|
1138 |
%$N^F$ &\qquad \qquad \qquad \qquad & $N^{ELL}$ \\ |
|
1139 |
%$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$ |
|
1140 |
%& & $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al)$ |
|
1141 |
%\end{tabular} |
|
1142 |
%} |
|
1143 |
%\end{center} |
|
1144 |
\smallskip |
|
1145 |
|
|
1146 |
{\tiny Example: integer $2$, in F: |
|
1147 |
|
|
1148 |
$$ \un{2}=\lambda f^{\blue (\al \rightarrow \al)}. \lambda x^{\blue \al}. (f\;(f\; x))~.$$ |
|
1149 |
} |
|
1150 |
\begin{itemize} |
|
1151 |
\item |
|
1152 |
Church binary words |
|
1153 |
\end{itemize} |
|
1154 |
%{\tiny |
|
1155 |
\begin{tabular}{cc} |
|
1156 |
system F: & LLL: \\ |
|
1157 |
$W^F$ & $W^{LLL}$\\ |
|
1158 |
{\tiny $\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$} |
|
1159 |
& |
|
1160 |
{\tiny $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al) \fm {\red \pa} (\al \fm \al)$} |
|
1161 |
\end{tabular} |
|
1162 |
%} |
|
1163 |
\smallskip |
|
1164 |
|
|
1165 |
{\tiny |
|
1166 |
Example: $w=\langle 1, 0, 0 \rangle$, in F: |
|
1167 |
|
|
1168 |
$$ \un{w}=\lambda s_0^{\blue (\al \rightarrow \al)}. \lambda s_1^{\blue (\al \rightarrow \al)}. |
|
1169 |
\lambda x^{\blue \al}. (s_1\;(s_0\; (s_0\; x)))~.$$ |
|
1170 |
} |
|
1171 |
\end{frame} |
|
1172 |
|
|
1173 |
%---------- |
|
1174 |
|
|
1175 |
\begin{frame} \frametitle{Representation of functions} |
|
1176 |
|
|
1177 |
\begin{itemize} |
|
1178 |
\item a term $t$ of type $!^k N \fm \pa^l N$, for some $k$, $l$, represents a function over unary integers |
|
1179 |
|
|
1180 |
$!^k W \fm \pa^l W$: function over binary words. |
|
317 |
\begin{frame} |
|
318 |
\frametitle{Result and work-in-progress} |
|
1181 | 319 |
|
1182 |
\item some examples of terms |
|
1183 |
$$\begin{array}{lll} |
|
1184 |
\mbox{addition}&&\\ |
|
1185 |
add &=& \la n m f x. (n\; f) \; (m \; f \; x) \; \\ |
|
1186 |
|
|
1187 |
&:~ &N\fm N \fm N\\ |
|
1188 |
&&\\ |
|
1189 |
\mbox{double}&&\\ |
|
1190 |
double &=& \la n f x. (n\; f) \; (n \; f \; x) \; \\ |
|
1191 |
|
|
1192 |
&:~ &! N \fm \pa N\\ |
|
1193 |
\mbox{concatenation}&&\\ |
|
1194 |
%conc &=& \la u^{W}. \la v^{W} .\La \al. \la o. \la z. \la x . (u \; o \; z \;(v \; o\; z \; x))\\ |
|
1195 |
%conc &=& \la u^{W}. \la v^{W} . \la o. \la z. \la x . ((u) \; o \; z) \;(v) \; o\; z \; x\\ |
|
1196 |
% &:~ &W\fl W \fl W\\ |
|
1197 |
conc &:~ &W\fm W \fm W\\ |
|
1198 |
\end{array} |
|
1199 |
$$ |
|
1200 |
%\mbox{multiplication}&&\\ |
|
1201 |
%%mult &=& \la n m f . (n\; (m\; f)) \\ |
|
1202 |
%mult' &=& \la n m f . (n\; (m\; f)) \\ |
|
1203 |
% |
|
1204 |
% &:~ &N\fm N \fm N\\ |
|
1205 |
% |
|
1206 |
%\mbox{squaring}&&\\ |
|
1207 |
%square &=& \la n f . (n\; (n\; f)) \\ |
|
1208 |
% |
|
1209 |
% &:~ &\bs N \fm \bs N\\ |
|
1210 |
%\end{array} |
|
1211 |
%$$ |
|
1212 |
\end{itemize} |
|
1213 |
|
|
1214 |
\end{frame} |
|
1215 |
|
|
1216 |
%---------- |
|
1217 |
|
|
1218 |
\begin{frame} \frametitle{Iteration in LLL} |
|
1219 |
|
|
1220 |
we can type the iterator $\ite$: |
|
1221 |
$$ \ite= \la f {x} {n}. \; (n \; f \; x) \; : \bs (A \fm A) \fm {\red \bs A} \fm {N} \fm {\red \pa A}$$ |
|
1222 |
%with $(\ite _A \; F \; t) \; \un{n} \rightarrow (F\; (F \; \dots (F\; t)\dots))$ \quad ($n$ times) |
|
1223 |
|
|
1224 |
\textbf{examples:} |
|
1225 |
|
|
1226 |
$(add \underline{3}): N \fm N$ can be iterated |
|
1227 |
|
|
1228 |
\smallskip |
|
1229 |
|
|
1230 |
$double: !N \fm \pa N$ cannot be iterated |
|
1231 |
|
|
1232 |
\smallskip |
|
1233 |
|
|
1234 |
thus some exponentially growing terms are not typable |
|
1235 |
%$double'= \la n. (\ite \; (add \underline{2}) \; \un{0}) \; n\; : N \fm \pa N$ |
|
1236 |
% |
|
1237 |
%but $double'$ cannot be iterated. |
|
1238 |
|
|
1239 |
|
|
1240 |
\end{frame} |
|
1241 |
|
|
1242 |
%%%%%%%%% |
|
1243 |
\begin{frame} \frametitle{LLL proof-nets} |
|
1244 |
|
|
1245 |
\vspace{-3mm} |
|
1246 |
\begin{figure} %[ht] |
|
1247 |
%\begin{center} |
|
1248 |
\includegraphics[angle=90,width=6.3cm]{SCANS/LLLboxes.jpg} |
|
1249 |
%\end{center} |
|
1250 |
\end{figure} |
|
1251 |
|
|
1252 |
\end{frame} |
|
1253 |
|
|
1254 |
%%%%%%%%% |
|
1255 |
\begin{frame} \frametitle{LLL proof-net reduction} |
|
1256 |
|
|
1257 |
\vspace{-4mm} |
|
1258 |
|
|
1259 |
\begin{figure} %[ht] |
|
1260 |
%\begin{center} |
|
1261 |
\includegraphics[angle=90,width=6cm]{SCANS/LLLreduction.jpg} |
|
1262 |
%\end{center} |
|
1263 |
\end{figure} |
|
1264 |
|
|
1265 |
\end{frame} |
|
1266 |
|
|
1267 |
%%%%%%%%% |
|
1268 |
\begin{frame} \frametitle{Level-by-level reduction of LLL proof-nets} |
|
1269 |
|
|
1270 |
|
|
1271 |
\begin{itemize} |
|
1272 |
\item as in ELL we use a level-by-level strategy |
|
1273 |
\item let $R$ be an LLL proof-net of depth $d$ |
|
1274 |
|
|
1275 |
round $i$: reduction at depth $i$ |
|
1276 |
|
|
1277 |
there are $d+1$ rounds for the reduction of $R$ |
|
1278 |
|
|
1279 |
\item \textbf{what happens during round $i$?} |
|
1280 |
\begin{itemize} |
|
1281 |
\item $|R|_i$ decreases at each step |
|
1282 |
|
|
1283 |
thus there are at most $|R|_i$ steps \quad {\blue (size bounds time)} |
|
1284 |
\item yet $|R|_{i+1}$ can increase: |
|
320 |
\begin{theorem}[Soundness] |
|
321 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
|
322 |
\end{theorem} |
|
1285 | 323 |
|
1286 |
during round $i$ we can have a quadratic increase: |
|
1287 |
|
|
1288 |
$$|R'|_{i+1} \leq |R|_{i+1}^2$$ |
|
1289 |
\end{itemize} |
|
1290 |
\item this repeats $d$ times, so on the whole we have a $|R|^{2^d}$ size increase |
|
1291 |
\item this yields a $O(|R|^{2^d})$ bound on the number of steps |
|
1292 |
\end{itemize} |
|
1293 |
\end{frame} |
|
324 |
\begin{conjecture}[Soundness] |
|
325 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$. |
|
326 |
\end{conjecture} |
|
1294 | 327 |
|
1295 |
%%%%%%%%% |
|
1296 |
\begin{frame} \frametitle{LLL complexity results} |
|
1297 |
|
|
1298 |
%\begin{itemize} |
|
1299 |
%\item We get |
|
1300 |
\begin{theorem}[Proof-net complexity] |
|
1301 |
If $R$ is an LLL proof-net of depth $d$, then it can be reduced to its normal form in |
|
1302 |
$O(|R|^{2^d})$ steps. |
|
1303 |
|
|
1304 |
\end{theorem} |
|
1305 |
|
|
1306 |
Thus at fixed depth $d$ we have a polynomial bound. |
|
1307 |
\medskip |
|
1308 |
|
|
1309 |
\begin{theorem}[Representable functions] |
|
1310 |
The functions representable by a term of type $W \fm \pa^k W$, for $k\geq 0$, are exactly the functions of FP (polynomial time functions). |
|
1311 |
\end{theorem} |
|
1312 |
|
|
1313 |
%\end{itemize} |
|
1314 | 328 |
\end{frame} |
1315 | 329 |
|
1316 |
%%%%%%%%% |
|
1317 |
\begin{frame} \frametitle{Further comments about LLL} |
|
1318 |
|
|
1319 |
\begin{itemize} |
|
1320 |
\item \textbf{LLL and $\lambda$-calculus}: |
|
1321 |
|
|
1322 |
a proper type system for $\lambda$-calculus can be designed out of LLL, which ensures a strong polynomial time bound on $\beta$-reduction (and not only on proof-net reduction) |
|
1323 |
\item \textbf{about expressivity}: |
|
1324 |
|
|
1325 |
the completeness result is an extensional one |
|
1326 |
|
|
1327 |
but the intensional expressivity of LLL is quite limited |
|
1328 |
|
|
1329 |
\smallskip |
|
1330 |
|
|
1331 |
indeed: rich features (higher-order, polymorphism) but "pessimistic" account of iteration \dots |
|
1332 |
\end{itemize} |
|
1333 |
\end{frame} |
|
1334 |
|
|
1335 |
\section{Other linear logic variants} |
|
1336 |
|
|
1337 |
%%%%%%%%% |
|
1338 |
\begin{frame} \frametitle{A glimpse of a linear logics zoo} |
|
1339 |
|
|
1340 |
\begin{itemize} |
|
1341 |
\item for P |
|
1342 |
\begin{itemize} |
|
1343 |
\item soft linear logic: {\tiny [Lafont04]} |
|
1344 |
|
|
1345 |
a simple system, but with more constrained programming |
|
1346 |
|
|
1347 |
\item bounded linear logic: {\tiny [GSS92]} |
|
1348 |
|
|
1349 |
$!_{P(\vec{x})} A$ : more explicit, but more flexible |
|
1350 |
\end{itemize} |
|
1351 |
\item for EXPTIME and $k$-EXPTIME |
|
1352 |
\begin{itemize} |
|
1353 |
\item ELL again: see tomorrow's talk |
|
1354 |
\end{itemize} |
|
1355 |
\item for PSPACE |
|
1356 |
\begin{itemize} |
|
1357 |
\item $STA_B$ {\tiny [GMRdR08]} : extends soft linear logic with a craftly typed conditional |
|
1358 |
\end{itemize} |
|
1359 |
\item for LOGSPACE |
|
1360 |
\begin{itemize} |
|
1361 |
\item $IntML$ {\tiny[DLS10]}: evaluation by computation by interaction |
|
1362 |
\end{itemize} |
|
1363 |
\end{itemize} |
|
1364 |
\end{frame} |
|
1365 |
|
|
1366 |
%\section{Conclusion} |
|
1367 |
%%%%%%%%%%%%%%%% |
|
1368 |
\begin{frame}{Conclusions and perspectives} |
|
1369 |
\begin{itemize} |
|
1370 |
\item while ramified recursion is based on a stratification of data, |
|
1371 |
|
|
1372 |
ELL / LLL are based on a stratification of programs |
|
1373 |
\item they yield type systems for $\lambda$-calculus |
|
1374 |
\item w.r.t. other ICC approaches: |
|
1375 |
\begin{itemize} |
|
1376 |
\item handle higher-order computation |
|
1377 |
\item but limited intensional expressivity |
|
1378 |
\end{itemize} |
|
1379 |
relations with other ICC systems are still to explore |
|
1380 |
%\item still to explore: how they relate to other more expressive ICC approaches (interpretations, NSI types) |
|
1381 |
\item light logics are languages for higher-order computation, but we only characterize first-order complexity classes \dots |
|
1382 |
|
|
1383 |
what about higher-order complexity? |
|
1384 |
\end{itemize} |
|
1385 |
\end{frame} |
|
1386 |
|
|
1387 | 330 |
\end{document} |
1388 | 331 |
|
1389 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1390 |
%%%%%%%%%%%%%%%%% GARBAGE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1391 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1392 |
|
|
1393 |
|
|
1394 |
%----------- |
|
1395 |
\begin{frame} \frametitle{Light linear logic, LLL (Girard 98)} |
|
1396 |
|
|
1397 |
%\vspace{-8mm} |
|
1398 |
|
|
1399 |
$$ |
|
1400 |
\begin{array}{ccc} |
|
1401 |
\bs A \fm \bs A \otimes \bs A \qquad & \infer{ \bs A\vdash \bs B}{A \vdash B} \qquad & \\ |
|
1402 |
& \bs A \otimes \bs B \fm \pa (A \otimes B) & |
|
1403 |
\end{array} |
|
1404 |
$$ |
|
1405 |
|
|
1406 |
\begin{tabular}{ll} |
|
1407 |
new modality $\pa$, with: & $\bs A \fm \pa A$\\ |
|
1408 |
$\pa$ is a functor and &$\pa A \otimes \pa B \fm \pa(A\otimes B)$ |
|
1409 |
\end{tabular} |
|
1410 |
|
|
1411 |
$\longrightarrow$ manages to avoid both exponentiation schemes |
|
1412 |
|
|
1413 |
\smallskip |
|
1414 |
|
|
1415 |
Light affine logic (LAL) is the variant with full weakening. |
|
1416 |
\end{frame} |
|
1417 |
|
|
1418 |
%%%%%%%%%%% |
|
1419 |
\begin{frame} \frametitle{Light linear logic: properties} |
|
1420 |
Proofs can be represented as \textit{proof-nets} (graphs). Normalization of proof-nets |
|
1421 |
corresponds to program execution. |
|
1422 |
\smallskip |
|
1423 |
|
|
1424 |
\begin{theo}[Girard] %[Girard 95] |
|
1425 |
Light linear logic \textit{proof-nets} admit a polynomial time normalization (at fixed \textit{depth}). |
|
1426 |
\end{theo} |
|
1427 |
|
|
1428 |
%\smallskip |
|
1429 |
|
|
1430 |
\begin{theo}[Completeness. Girard/Asperti-Roversi] |
|
1431 |
%All polynomial time functions on binary lists |
|
1432 |
All polynomial time functions $f: \{0,1\}^{\star} \rightarrow \{0,1\}^{\star}$ |
|
1433 |
can be represented in Light Linear Logic (resp. Light \textit{Affine} Logic). |
|
1434 |
\end{theo} |
|
1435 |
|
|
1436 |
\end{frame} |
|
1437 |
|
|
1438 |
%----------- |
|
1439 |
\begin{frame} \frametitle{ Light linear logic and typing} |
|
1440 |
|
|
1441 |
%\vspace{-3mm} |
|
1442 |
|
|
1443 |
Can we use LLL or LAL directly as type systems for lambda calculus~? |
|
1444 |
\smallskip |
|
1445 |
There are two pitfalls: |
|
1446 |
\begin{itemize} |
|
1447 |
\item they do not give subject-reduction, |
|
1448 |
\item no polynomial bound on the number of $\beta$-reduction steps for typed terms (even if there is one on proof-net normalization). |
|
1449 |
\end{itemize} |
|
1450 |
\end{frame} |
|
1451 |
|
|
1452 |
%----------- |
|
1453 |
\begin{frame} \frametitle{Type system DLAL} |
|
1454 |
|
|
1455 |
%\vspace{-3mm} |
|
1456 |
% |
|
1457 |
%Can we use LLL or LAL directly as type systems for lambda calculus~? |
|
1458 |
% There are two pitfalls: |
|
1459 |
%\begin{itemize} |
|
1460 |
%\item they do not give subject-reduction, |
|
1461 |
%\item no polynomial bound on the number of $\beta$-reduction steps for typed terms (even if there is one on proof-net normalization). |
|
1462 |
%\end{itemize} |
|
1463 |
|
|
1464 |
%\medskip |
|
1465 |
%$\rightarrow$ To overcome these problems: |
|
1466 |
|
|
1467 |
To overcome the problems with typing in LAL: |
|
1468 |
|
|
1469 |
we can restrict in Light affine logic the use of $\bs$ to $\bs A \fm B$, denoted $A \fli B$ |
|
1470 |
|
|
1471 |
the DLAL (\textit{Dual Light Affine Logic}) type system [Baillot-Terui04]: |
|
1472 |
$$ A, B ::= \alpha \; |\; A \fm B \; |\; A \fli B \; |\; \pa A \; |\; \forall \alpha. A$$ |
|
1473 |
|
|
1474 |
\vspace{-4mm} |
|
1475 |
typing judgements of the form: $ {\blue \Gamma} ; {\red \Delta} \vdash t: A$, |
|
1476 |
where |
|
1477 |
|
|
1478 |
\begin{tabular}{l} |
|
1479 |
$ {\blue \Gamma}$ contains duplicable variables,\\ |
|
1480 |
${\red \Delta}$ contains linear variables. |
|
1481 |
\end{tabular} |
|
1482 |
\end{frame} |
|
1483 |
|
|
332 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
333 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
|
1484 | 334 |
%---------- |
1485 |
% |
|
1486 |
%%\overlays{8}{ |
|
1487 |
%\begin{frame} \frametitle{DLAL typing rules} |
|
1488 |
%%\DefaultTransition{Dissolve} |
|
1489 |
%{\tiny |
|
1490 |
%%\onlySlide*{1}{ |
|
1491 |
%% \begin{center} |
|
1492 |
%%\hspace{-12mm} |
|
1493 |
%%\fbox{ |
|
1494 |
%\begin{tabular}{l@{\hspace{-2mm}}l} |
|
1495 |
% {\infer[\mbox{(Id)}]{; x:A \vdash x:A}{}} & \\ |
|
1496 |
%% &\\ |
|
1497 |
% |
|
1498 |
%\untilSlide*{2}{ |
|
1499 |
%{\infer[\mbox{($\fm$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fm B } |
|
1500 |
% {\Gamma_1; \Delta_1, x:A \vdash t:B}} |
|
1501 |
%} |
|
1502 |
%\onlySlide*{3}{ |
|
1503 |
%{\red \infer[\mbox{($\fm$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fm B } |
|
1504 |
% {\Gamma_1{\blue ;} \Delta_1, x:A \vdash t:B}} |
|
1505 |
%} |
|
1506 |
%\fromSlide*{4}{ |
|
1507 |
%{\infer[\mbox{($\fm$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fm B } |
|
1508 |
% {\Gamma_1; \Delta_1, x:A \vdash t:B}} |
|
1509 |
%} |
|
1510 |
% & |
|
1511 |
% {\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2; \Delta_1, \Delta_2 \vdash (t\; u) :B } |
|
1512 |
% {\Gamma_1; \Delta_1 \vdash t:A \fm B & \Gamma_2; \Delta_2 \vdash u:A}} |
|
1513 |
%\\[1ex] |
|
1514 |
% |
|
1515 |
%\untilSlide*{2}{ |
|
1516 |
%{\infer[\mbox{($\fli$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fli B } |
|
1517 |
% {\Gamma_1, x:A ; \Delta_1\vdash t:B}} |
|
1518 |
%} |
|
1519 |
%\onlySlide*{3}{\red |
|
1520 |
%{\infer[\mbox{($\fli$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fli B } |
|
1521 |
% {\Gamma_1, x:A {\blue ;} \Delta_1\vdash t:B}} |
|
1522 |
%} |
|
1523 |
%\fromSlide*{4}{ |
|
1524 |
%{\infer[\mbox{($\fli$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fli B } |
|
1525 |
% {\Gamma_1, x:A ; \Delta_1\vdash t:B}} |
|
1526 |
%} |
|
1527 |
% & |
|
1528 |
%\untilSlide*{3}{ |
|
1529 |
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B } |
|
1530 |
% {\Gamma_1; \Delta_1 \vdash t:A \fli B & ; z:C \vdash u:A}} |
|
1531 |
%} |
|
1532 |
%\onlySlide*{4}{\red |
|
1533 |
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B } |
|
1534 |
% {\Gamma_1; \Delta_1 \vdash t:A \fli B & {\blue ; z:C \vdash u:A }}} |
|
1535 |
%} |
|
1536 |
%\onlySlide*{5}{ |
|
1537 |
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B } |
|
1538 |
% {\Gamma_1; \Delta_1 \vdash t:A \fli B & ; z:C \vdash u:A}} |
|
1539 |
%} |
|
1540 |
%\onlySlide*{6}{ |
|
1541 |
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B } |
|
1542 |
% {\Gamma_1; \Delta_1 \vdash t:A \fli B & ; z:C \vdash u:A}} |
|
1543 |
%} |
|
1544 |
%\fromSlide*{7}{ |
|
1545 |
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B } |
|
1546 |
% {\Gamma_1; \Delta_1 \vdash t:A \fli B & {\blue ; z:C \vdash u:A}}} |
|
1547 |
%} |
|
1548 |
% |
|
1549 |
%\\[1ex] |
|
1550 |
%{\infer[\mbox{(Weak)}]{\Gamma_1, \Gamma_2; \Delta_1, \Delta_2 \vdash t: A } |
|
1551 |
% {\Gamma_1; \Delta_1 \vdash t:A}} |
|
1552 |
% & |
|
1553 |
%\onlySlide*{1}{ |
|
1554 |
%{\infer[\mbox{(Cntr)}]{x:A, \Gamma_1; \Delta_1 \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:A,x_2:A, \Gamma_1; \Delta_1 \vdash t:B }} |
|
1555 |
%} |
|
1556 |
%\onlySlide*{2}{\red |
|
1557 |
%{\infer[\mbox{(Cntr)}]{x:A, \Gamma_1{\blue ;} \Delta_1 \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:A,x_2:A, \Gamma_1{\blue ;} \Delta_1 \vdash t:B }} |
|
1558 |
%} |
|
1559 |
%\fromSlide*{3}{ |
|
1560 |
%{\infer[\mbox{(Cntr)}]{x:A, \Gamma_1; \Delta_1 \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:A,x_2:A, \Gamma_1; \Delta_1 \vdash t:B }} |
|
1561 |
%} |
|
1562 |
%\\[1ex] |
|
1563 |
% |
|
1564 |
%\untilSlide*{4}{ |
|
1565 |
%{\infer[\mbox{($\pa$ i)}]{\Gamma ; x_1:\pa B_1, \dots, x_n:\pa B_n \vdash t: \pa A } |
|
1566 |
% { ; \Gamma, x_1:B_1, \dots, x_n:B_n \vdash t:A}} |
|
1567 |
%} |
|
1568 |
%\onlySlide*{5}{\red |
|
1569 |
%{\infer[\mbox{($\pa$ i)}]{\Gamma {\blue ;} x_1:\pa B_1, \dots, x_n:\pa B_n \vdash t: \pa A } |
|
1570 |
% { {\blue ;} \Gamma, x_1:B_1, \dots, x_n:B_n \vdash t:A}} |
|
1571 |
%} |
|
1572 |
%\onlySlide*{6}{ |
|
1573 |
%{\infer[\mbox{($\pa$ i)}]{\Gamma ; x_1:\pa B_1, \dots, x_n:\pa B_n \vdash t: \pa A } |
|
1574 |
% { ; \Gamma, x_1:B_1, \dots, x_n:B_n \vdash t:A}} |
|
1575 |
%} |
|
1576 |
%\fromSlide*{7}{ |
|
1577 |
%{\infer[\mbox{($\pa$ i)}]{ \Gamma ; x_1:\pa B_1, \dots, x_n:\pa B_n \vdash t: \pa A } |
|
1578 |
% { {\blue ; \Gamma, x_1:B_1, \dots, x_n:B_n \vdash t:A}}} |
|
1579 |
%} |
|
1580 |
% |
|
1581 |
% & |
|
1582 |
%%\hspace{-10mm} |
|
1583 |
% |
|
1584 |
% \untilSlide*{5}{ |
|
1585 |
% {\infer[\mbox{\hspace{-1mm}($\pa$ e)}]{\Gamma_1,\Gamma_2; \Delta_1, \Delta_2 \vdash t[u \slash x] :B } |
|
1586 |
% {\Gamma_1; \Delta_1 \vdash u: \pa A & \Gamma_2; x:\pa A, \Delta_2 \vdash t:B}} |
|
1587 |
%} |
|
1588 |
%\onlySlide*{6}{\red |
|
1589 |
% {\infer[\mbox{\hspace{-1mm}($\pa$ e)}]{\Gamma_1,\Gamma_2; \Delta_1, \Delta_2 \vdash t[u \slash x] :B } |
|
1590 |
% {\Gamma_1; \Delta_1 \vdash u: \pa A & \Gamma_2; x:\pa A, \Delta_2 \vdash t:B}} |
|
1591 |
%} |
|
1592 |
%\fromSlide*{7}{ |
|
1593 |
% {\infer[\mbox{\hspace{-1mm}($\pa$ e)}]{\Gamma_1,\Gamma_2; \Delta_1, \Delta_2 \vdash t[u \slash x] :B } |
Formats disponibles : Unified diff