163 |
163 |
|
164 |
164 |
\begin{itemize}
|
165 |
165 |
\item fewer complexity classes characterized by {\ICC{ICC logics}} than by {\BA{bounded arithmetic}}
|
166 |
|
\item in particular, not so satisfactory for non-deterministic classes
|
|
166 |
\item in particular, {\ICC{ICC logics}} not so satisfactory for non-deterministic classes
|
167 |
167 |
|
168 |
168 |
e.g. NP, PH (polynomial hierarchy) \dots
|
169 |
169 |
|
... | ... | |
185 |
185 |
\begin{frame}
|
186 |
186 |
\frametitle{Our goal}
|
187 |
187 |
|
188 |
|
design an { \ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
|
|
188 |
design an {\ICC{unbounded}} {\BA{arithmetic}} for characterizing FPH
|
189 |
189 |
|
190 |
190 |
\medskip
|
191 |
191 |
|
192 |
192 |
expected benefits:
|
193 |
193 |
\begin{itemize}
|
194 |
194 |
\item bridge {\BA{bounded arithmetic}} and {\ICC{ICC logics}}
|
195 |
|
\item enlarge the toolbox {\ICC{ICC logics}} of , by exploring the power of quantification
|
|
195 |
\item enlarge the toolbox of {\ICC{ICC logics}}, by exploring the power of quantification (under-investigated in ICC)
|
196 |
196 |
\end{itemize}
|
197 |
197 |
\end{frame}
|
198 |
198 |
|
... | ... | |
203 |
203 |
|
204 |
204 |
We want to use:
|
205 |
205 |
\begin{itemize}
|
206 |
|
\item {\ICC{ramification}}
|
207 |
|
\item
|
|
206 |
\item {\ICC{ramification}} (distinction safe / normal arguments) from {\ICC{ICC}}
|
|
207 |
\item induction calibrated by logical complexity, from {\BA{bounded arithmetic}}
|
208 |
208 |
\end{itemize}
|
209 |
209 |
\end{frame}
|
210 |
210 |
|
211 |
|
|
212 |
|
\end{document}
|
213 |
|
|
214 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
215 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
216 |
|
%----------
|
217 |
|
|
218 |
211 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
219 |
212 |
|
220 |
213 |
\begin{frame}
|
221 |
|
\frametitle{}
|
|
214 |
\frametitle{Ingredients for a logical characterization}
|
222 |
215 |
|
223 |
216 |
\begin{itemize}
|
224 |
|
\item \end{itemize}
|
|
217 |
\item choose a way to \textit{specify} functions
|
|
218 |
\item choose a logic:
|
|
219 |
|
|
220 |
logical system + axioms, induction scheme
|
|
221 |
\item prove soundness:
|
|
222 |
|
|
223 |
realizability-like argument, with a well-chosen \textit{target language}
|
|
224 |
\item prove completeness
|
|
225 |
\end{itemize}
|
225 |
226 |
\end{frame}
|
226 |
227 |
|
227 |
228 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
228 |
229 |
|
229 |
230 |
\begin{frame}
|
230 |
|
\frametitle{Introduction}
|
|
231 |
\frametitle{Specifying the functions}
|
231 |
232 |
|
|
233 |
Various approaches to specify a function $f$:
|
232 |
234 |
\begin{itemize}
|
233 |
|
\item \textit{Implicit computational complexity} (ICC) :
|
|
235 |
\item {\BA{formula specification}} (bounded arithmetic):
|
234 |
236 |
|
235 |
|
characterizing complexity classes by programming languages / calculi without explicit bounds,
|
|
237 |
a formula $A_f$ defines the graph of $f$
|
|
238 |
\item {\ICC{equational specification}} (Leivant: intrinsic theories)
|
236 |
239 |
|
237 |
|
but instead
|
238 |
|
by restricting the constructions %of the language.
|
239 |
|
\item either theory-oriented or certification-oriented
|
240 |
|
\item often conveniently formulated by:
|
241 |
|
|
242 |
|
(i) a general programming language, (ii) a criterion on programs
|
243 |
|
\end{itemize}
|
244 |
|
\end{frame}
|
245 |
|
|
246 |
|
%%%%%%%%%%%%%%%%%%%%%%
|
247 |
|
\begin{frame}
|
248 |
|
\frametitle{Various approaches to ICC}
|
|
240 |
conjunction of first-order equations defining $f$
|
249 |
241 |
|
|
242 |
\item applicative theories (Cantini, Kahle-Oitavem \dots)
|
250 |
243 |
|
251 |
|
\begin{itemize}
|
252 |
|
\item ramified recursion (Leivant, Leivant-Marion) / safe recursion (Bellantoni-Cook)
|
253 |
|
% \item restrictions on second-order logic (taming comprehension rule) (Leivant)
|
254 |
|
\item variants of linear logic (light logics) \textbf{this talk}
|
255 |
|
%\item \emph{read-only} functional languages (Jones)
|
256 |
|
\item interpretation methods
|
257 |
|
\item \dots
|
258 |
|
\end{itemize}
|
|
244 |
combinatory term computing $f$
|
|
245 |
\item \dots
|
259 |
246 |
|
260 |
|
\end{frame}
|
261 |
|
|
262 |
|
%%%%%%%%%%%%%%%%%%%%%%
|
263 |
|
\begin{frame}
|
264 |
|
\frametitle{ICC vs. complexity analysis}
|
265 |
|
|
266 |
|
specificities of ICC w.r.t. automatic complexity analysis:
|
267 |
|
\begin{itemize}
|
268 |
|
\item complexity certificate (e.g. type)
|
269 |
|
\item modular
|
270 |
|
\end{itemize}
|
271 |
|
|
272 |
|
but
|
273 |
|
|
274 |
|
\begin{itemize}
|
275 |
|
\item only rough complexity bounds
|
276 |
|
\item less general analysis (specific programming discipline)
|
277 |
247 |
\end{itemize}
|
278 |
|
\end{frame}
|
|
248 |
\end{frame}
|
279 |
249 |
|
280 |
|
|
281 |
|
\end{document}
|
282 |
|
|
283 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
284 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
285 |
|
%----------
|
286 |
|
|
287 |
|
\begin{frame}\frametitle{The proofs-as-programs viewpoint}
|
288 |
|
|
289 |
|
\begin{itemize}
|
290 |
|
\item our reference language here is $\la$-calculus
|
291 |
|
|
292 |
|
untyped $\la$-calculus is Turing-complete
|
293 |
|
\item type systems can guarantee termination
|
294 |
|
|
295 |
|
ex: system F (polymorphic types)
|
296 |
|
%\end{itemize}
|
297 |
|
%
|
298 |
|
%\end{frame}
|
299 |
|
%
|
300 |
|
%----------
|
301 |
|
%\begin{frame} \frametitle{}
|
302 |
|
|
303 |
|
%\begin{itemize}
|
304 |
|
\item proofs-as-programs correspondence
|
305 |
|
%Curry-Howard correspondence
|
306 |
|
\begin{tabular}{ccc}
|
307 |
|
proof & = & type derivation \\
|
308 |
|
normalization & = & execution \\
|
309 |
|
intuitionistic logic & $\leftrightarrow$ & system F
|
310 |
|
\end{tabular}
|
311 |
|
\item some characteristics of $\la$-calculus:
|
312 |
|
|
313 |
|
higher-order types
|
314 |
|
|
315 |
|
no distinction between data / program
|
316 |
|
\end{itemize}
|
317 |
|
\end{frame}
|
318 |
|
|
319 |
|
%----------
|
320 |
|
\begin{frame} \frametitle{Linear logic}
|
321 |
|
|
322 |
|
\begin{itemize}
|
323 |
|
\item linear logic (LL):
|
324 |
|
|
325 |
|
fine-grained decomposition of intuitionistic logic
|
326 |
|
|
327 |
|
duplication is controlled with a specific connective $\bs$ (\textit{exponential})
|
328 |
|
\item variants of linear logic with different rules for
|
329 |
|
$\bs$ have bounded complexity: \textit{light logics}
|
330 |
|
|
331 |
|
these logics (or subsystems) can be used as type systems for $\la$-calculus
|
332 |
|
|
333 |
|
thus:
|
334 |
|
|
335 |
|
(i) general language= $\lambda$-calculus, (ii) criterion= typability
|
336 |
|
\end{itemize}
|
337 |
|
\end{frame}
|
338 |
|
|
339 |
|
%----------
|
340 |
|
\begin{frame} \frametitle{Outline of the talk}
|
341 |
|
|
342 |
|
%\begin{itemize}
|
343 |
|
%\item Background on $\la$-calculus and system F
|
344 |
|
%\item The type system DLAL
|
345 |
|
%\item Relating the Bellantoni-Cook algebra and light linear logic
|
346 |
|
%\item Conclusion
|
347 |
|
%\end{itemize}
|
348 |
|
\begin{enumerate}
|
349 |
|
\item a recap on $\lambda$-calculus and system F
|
350 |
|
\item elementary linear logic (ELL): elementary complexity
|
351 |
|
\item light linear logic (LLL): Ptime complexity
|
352 |
|
\item other linear logic variants
|
353 |
|
\item conclusion
|
354 |
|
\end{enumerate}
|
355 |
|
\end{frame}
|
356 |
|
|
357 |
|
%-----------
|
358 |
|
|
359 |
|
\section{A recap on $\lambda$-calculus and system F}
|
360 |
|
%----------
|
361 |
|
\begin{frame} \frametitle{$\lambda$-calculus}
|
362 |
|
|
363 |
|
\begin{itemize}
|
364 |
|
\item $\lambda$-terms:
|
365 |
|
$$t, u::= x \;|\; \la x. t \; |\; t\; u$$
|
366 |
|
%$$t, u::= x \;|\; \la x. t \; |\; (t\; u)$$
|
367 |
|
|
368 |
|
\begin{tabular}{cl}
|
369 |
|
notations: &$\la x_1 x_2. t$ \quad for $\la x_1. \la x_2.t$\\
|
370 |
|
& $(t\; u \; v)$ \quad for $((t\; u)\;v)$\\
|
371 |
|
& substitution: $t[u/ x]$
|
372 |
|
\end{tabular}
|
373 |
|
\item
|
374 |
|
$\beta$-reduction:
|
375 |
|
|
376 |
|
$\xrightarrow{1}$ relation obtained by context-closure of:
|
377 |
|
$$ ((\la x. t) u) \xrightarrow{1} t[u/ x]$$
|
378 |
|
|
379 |
|
$\rightarrow$ reflexive and transitive closure of $\xrightarrow{1}$.
|
380 |
|
\end{itemize}
|
381 |
|
\end{frame}
|
382 |
|
|
383 |
|
%----------
|
384 |
|
\begin{frame} \frametitle{Typed $\lambda$-terms}
|
385 |
|
system F types:
|
386 |
|
$$T, U::= \alpha \; | \; T \rightarrow U \;|\; \forall \al . T$$
|
387 |
|
|
388 |
|
simple types: without $\forall$
|
389 |
|
|
390 |
|
\medskip
|
391 |
|
|
392 |
|
simply typed terms, in Church-style:
|
393 |
|
$$
|
394 |
|
x^T
|
395 |
|
\quad\quad
|
396 |
|
(\la x^T. M^U)^{T\rightarrow U}
|
397 |
|
\quad\quad
|
398 |
|
((M^{T\rightarrow U}) N^T)^U
|
399 |
|
$$
|
400 |
|
%$$
|
401 |
|
%(M^U)^{\forall \alpha.U}
|
402 |
|
%\quad\quad
|
403 |
|
%((M^{\forall\alpha. U})T)^{U[T/\alpha]}
|
404 |
|
%$$
|
405 |
|
%with: in $\La \alpha. M^U$,
|
406 |
|
%$\alpha$ not free in types of
|
407 |
|
%free term variables of $M$ %(the {\em eigenvariable condition}).
|
408 |
|
|
409 |
|
\end{frame}
|
410 |
|
|
411 |
|
%----------
|
412 |
|
%----------
|
413 |
|
\begin{frame} \frametitle{Proofs-programs correspondence (Curry-Howard)}
|
414 |
|
|
415 |
|
\begin{tabular}{ccc}
|
416 |
|
\textbf{typed term} &$\Rightarrow$& \textbf{2nd-order intuitionistic}\\
|
417 |
|
&&\quad \textbf{ logic proof}\\
|
418 |
|
&&\\
|
419 |
|
type && formula\\
|
420 |
|
&&\\
|
421 |
|
$M^B$, with & &proof of $A_1, \dots, A_n \vdash B$\\
|
422 |
|
free variables $x_i:A_i$, $1\leq i \leq n$&&\\
|
423 |
|
&&\\
|
424 |
|
$\beta$-reduction of term && normalization of proof\\
|
425 |
|
&& (cut elimination)
|
426 |
|
\end{tabular}
|
427 |
|
\end{frame}
|
428 |
|
|
429 |
|
|
430 |
|
%----------
|
431 |
|
\begin{frame} \frametitle{Some types and data types}
|
432 |
|
$$\begin{array}{lcl}
|
433 |
|
\mbox{Polymorphic identity:}&&\\
|
434 |
|
%{\blue \La \al. \la x^{\al}. x }&:& \forall \al. (\al \fl \al)\\
|
435 |
|
{\blue \la x^{\al}. x }&:& \forall \al. (\al \fl \al)\\
|
436 |
|
&&\\
|
437 |
|
\mbox{Church unary integers:}&&\\
|
438 |
|
N^F & =& \forall \al. (\al \fl \al) \fl (\al \fl \al) \\
|
439 |
|
\mbox{example}&&\\
|
440 |
|
% {\blue \underline{2}}&{\blue =}& {\blue \La \al. \la f^{\al\fl \al}.\la x^{\al}. (f\; (f \; x))^{\al}: N }\\
|
441 |
|
%{\blue \underline{2} }&{\blue =}& {\blue \la f^{\al\fl \al}.\la x^{\al}. (f)\; (f) \; x: N }\\
|
442 |
|
\underline{2} &{\blue =}& {\blue \la f^{\al\fl \al}.\la x^{\al}. (f\; (f \; x)): N^F }\\
|
443 |
|
\mbox{Church binary words:} &&\\
|
444 |
|
W^F & =& \forall \al. (\al \fl \al) \fl (\al \fl \al) \fl (\al \fl \al)\\
|
445 |
|
\mbox{example}&&\\
|
446 |
|
% {\blue \underline{<1,1,0>}}&{\blue =}& {\blue \La \al. \la o^{\al\fl \al}.\la z^{\al\fl \al}.\la x^{\al}. (o\; (o \; (z\; x)))^{\al}: W }\\
|
447 |
|
% {\blue \underline{<1,1,0>} }&{\blue =}& {\blue \la o^{\al\fl \al}.\la z^{\al\fl \al}.\la x^{\al}. (o)\; (o) \; (z)\; x : W }\\
|
448 |
|
\underline{<1,1,0>} &{\blue =}& {\blue \la s_0^{\al\fl \al}.\la s_1^{\al\fl \al}.\la x^{\al}. (s_1\; (s_1 \; (s_0\; x))) : W^F }\\
|
449 |
|
%\end{eqnarray*}
|
450 |
|
\end{array}
|
451 |
|
$$
|
452 |
|
\end{frame}
|
453 |
|
|
454 |
|
|
455 |
|
|
456 |
|
%----------
|
457 |
|
\begin{frame} \frametitle{Iteration }
|
458 |
|
|
459 |
|
For each inductive data type an associated iteration principle.
|
460 |
|
|
461 |
|
For instance, for $N= \forall \al. (\al \fl \al) \fl (\al \fl \al)$,
|
462 |
|
we can define an iterator $\ite$:
|
463 |
|
$$ \ite= \la f x n. \; (n \; f \; x) \; : (A \fl A) \fl A \fl N \fl A, \quad \mbox{for any $A$}$$
|
464 |
|
then
|
465 |
|
|
466 |
|
$(\ite \; t \; u \; \un{n}) \rightarrow (t\; (t \dots (t\; u)\dots)$ \quad ($n$ times)
|
467 |
|
|
468 |
|
\bigskip
|
469 |
|
|
470 |
|
\textbf{example:}
|
471 |
|
|
472 |
|
|
473 |
|
$double: N \fl N$
|
474 |
|
|
475 |
|
$exp= \la n. (\ite \; double \; \un{1} \; n)\; : N \fl N$
|
476 |
|
|
477 |
|
$tower= \la n. (\ite \; exp \; \un{1} \; n)\; : N \fl N$
|
478 |
|
|
479 |
|
|
480 |
|
|
481 |
|
\end{frame}
|
482 |
|
|
483 |
|
%----------
|
484 |
|
|
485 |
|
\begin{frame} \frametitle{Examples of terms}
|
486 |
|
|
|
250 |
\begin{frame}
|
|
251 |
\frametitle{Our logical system}
|
487 |
252 |
|
488 |
|
$$\begin{array}{lll}
|
489 |
|
\mbox{concatenation}&&\\
|
490 |
|
%conc &=& \la u^{W}. \la v^{W} .\La \al. \la o. \la z. \la x . (u \; o \; z \;(v \; o\; z \; x))\\
|
491 |
|
conc &=& \la u^{W}. \la v^{W} . \la s_0. \la s_1. \la x . (u \; s_0 \; s_1) \;(v \; s_0\; s_1 \; x)\\
|
492 |
|
&:~ &W\fl W \fl W\\
|
493 |
|
&&\\
|
494 |
|
\mbox{length}&&\\
|
495 |
|
%length&=& \la u^{W}. \La \al. \la f^{\al\fl \al }.( u\; f \; f)^{\al\fl \al}\\
|
496 |
|
length&=& \la u^{W}. \la f^{\al\fl \al }.(u\; f \; f)^{\al\fl \al}\\
|
497 |
|
&:~ &W \fl N\\
|
498 |
|
% \end{array}$$
|
499 |
|
%
|
500 |
|
% $$\begin{array}{lll}
|
501 |
|
\mbox{\textit{repeated concatenation}}&&\\
|
502 |
|
%mult&=& \la n. \la m. (m \; \la k.\la f.\la x. (n \; f\; (k\; f\; x))) \; \underline{0}&:& ~N \fli N \fm \pa N\\
|
503 |
|
%mult&=& \la n^{N}. \la v^{W}. (n \; (conc \; v)^{W\fl W} ) \; \underline{nil}^W\\
|
504 |
|
rep&=& \la n^{N}. \la v^{W}. [n \; (conc \; v) \; \underline{nil}]^W\\
|
505 |
|
&:& ~N \fl W \fl W\\
|
506 |
|
%&&&&\\
|
507 |
|
%square&& &:&N \fm \pa^{4}N
|
508 |
|
\end{array}
|
509 |
|
$$
|
510 |
|
\end{frame}
|
511 |
|
|
512 |
|
%----------
|
513 |
|
\begin{frame} \frametitle{System F and termination}
|
514 |
|
|
515 |
|
\bigskip
|
516 |
|
\begin{theo}[Girard] %[Girard 1972]
|
517 |
|
If a term is well typed in $F$, then it is strongly normalizable.
|
518 |
|
\end{theo}
|
519 |
|
|
520 |
|
\bigskip
|
521 |
|
|
522 |
|
Thus a type derivation can be seen as a termination witness.
|
523 |
|
|
524 |
|
In particular, a term $t: W \fl W$ represents a function on words which terminates
|
525 |
|
on all inputs.
|
526 |
|
|
527 |
|
\bigskip
|
528 |
|
|
529 |
|
%\textbf {Problem:}
|
530 |
|
|
531 |
|
Can we refine this system in order to guarantee \textit{feasible} termination, that is to
|
532 |
|
say in polynomial time?
|
533 |
|
\end{frame}
|
534 |
|
|
535 |
|
%---------------
|
536 |
|
|
537 |
|
|
538 |
|
%-----------
|
539 |
|
%%\begin{frame} \frametitle{Exponential blow up}
|
540 |
|
%\begin{frame} \frametitle{How can exponential blow up occur?}
|
541 |
|
%
|
542 |
|
%\vspace{-5mm}
|
543 |
|
%
|
544 |
|
%(thanks to K.~Terui)
|
545 |
|
%
|
546 |
|
%2 easy ways to cause exponential blow-up:
|
547 |
|
%\begin{itemize}
|
548 |
|
%\item
|
549 |
|
% basic functions: $0: \NN$, \quad $s: \NN \rightarrow \NN$, \quad $+:\NN \rightarrow \NN \rightarrow \NN$.
|
550 |
|
%\item exponential blow-up can be caused by:
|
551 |
|
%\begin{enumerate}
|
552 |
|
% \item iteration-iteration
|
553 |
|
%$$\begin{array}{cccccc}
|
554 |
|
%\mbox{dbl}(0) &=&0 \qquad \qquad & \mbox{exp}(0)&=&1 \\
|
555 |
|
%\mbox{dbl}(s(x))&=&\mbox{dbl}(x)+2 \qquad & \mbox{exp}(s(x))&=&\mbox{dbl}(\mbox{exp}(x))
|
556 |
|
%\end{array}
|
557 |
|
%$$
|
558 |
|
%\item contraction-iteration
|
559 |
|
%$$\begin{array}{cccccc}
|
560 |
|
%\mbox{dbl}(x) &=&x+x \qquad \qquad & \mbox{exp}(0)&=&1 \\
|
561 |
|
% &&& \mbox{exp}(s(x))&=&\mbox{dbl}(\mbox{exp}(x))
|
562 |
|
%\end{array}
|
563 |
|
%$$
|
564 |
|
%\end{enumerate}
|
565 |
|
%\vspace{-4mm}
|
566 |
|
%\item to keep contraction and iteration, we need to forbid bad combinations of these.
|
567 |
|
%\end{itemize}
|
568 |
|
%
|
569 |
|
%\end{frame}
|
570 |
|
|
571 |
|
|
572 |
|
%-----------
|
573 |
|
\begin{frame} \frametitle{Linear logic}
|
574 |
|
|
|
253 |
Ramified classical logic (\RC):
|
|
254 |
\begin{itemize}
|
|
255 |
\item 1st-order classical logic \dots
|
|
256 |
\item \dots over the language:
|
575 |
257 |
\begin{itemize}
|
576 |
|
\item Linear logic (LL) arises from the decomposition
|
577 |
|
$$A \fli B \equiv \bs A \fm B$$
|
578 |
|
|
579 |
|
\item the $\bs$ modality accounts for duplication (contraction)
|
580 |
|
|
581 |
|
\item $!$ satisfies the following principles:
|
582 |
|
$$
|
583 |
|
\begin{array}{ccc}
|
584 |
|
\bs A \fm \bs A \otimes \bs A \qquad & \infer{ \bs A\vdash \bs B}{A \vdash B} \qquad & \bs A \fm A \\
|
585 |
|
& \bs A \otimes \bs B \fm \bs (A \otimes B) & \bs A \fm \bs \bs A
|
586 |
|
\end{array}
|
587 |
|
$$
|
|
258 |
\item functions and constants: $0, \succ, +, \cdot, \smsh, |.|$
|
|
259 |
\item predicates: $\leq, {\ICC{N_0}}, {\ICC{N_1}}$
|
588 |
260 |
\end{itemize}
|
589 |
|
\end{frame}
|
590 |
|
|
591 |
|
\section{Elementary linear logic}
|
592 |
|
%-----------
|
593 |
|
\begin{frame} \frametitle{Elementary linear logic (ELL) \qquad [Girard95]}
|
594 |
|
|
595 |
|
\begin{itemize}
|
596 |
|
\item Language of formulas:
|
597 |
|
$$ A, B := \alpha \;|\; A \multimap B \;|\; !A \;|\; \forall \alpha. A $$
|
598 |
|
|
|
261 |
\item with axioms:
|
|
262 |
\begin{itemize}
|
|
263 |
\item BASIC theory: defining $\succ, +, \cdot, \smsh, |.|$ (as in Buss' $S_1$)
|
599 |
264 |
\smallskip
|
600 |
|
Denote $!^k A$ for $k$ occurrences of $!$.
|
601 |
|
\item The system is designed in such a way that the following principles are \textbf{not} provable
|
602 |
|
$$ !A \multimap A, \quad !A \multimap !!A$$
|
603 |
|
\item Defined to characterize \textit{elementary time complexity}, that is to say in time bounded by $2_k^{n}$, for arbitrary $k$.
|
604 |
|
\end{itemize}
|
605 |
|
\end{frame}
|
606 |
265 |
|
607 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
266 |
notation:
|
608 |
267 |
|
609 |
|
\begin{frame} \frametitle{Elementary linear logic rules}
|
610 |
|
|
611 |
|
%{\tiny
|
612 |
|
\vspace{-5mm}
|
613 |
|
|
614 |
|
\begin{center}
|
615 |
|
\begin{tabular}{ll}
|
616 |
|
{\infer[\mbox{(Id)}]{ x:A \vdash x:A}{}} & \\[1ex]
|
617 |
|
&\\
|
618 |
|
{\infer[\mbox{($\fm$ i)}]{\Gamma \vdash \la x. t: A \fm B }
|
619 |
|
{\Gamma, x:A \vdash t:B}}
|
620 |
|
|
621 |
|
&
|
622 |
|
{\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2 \vdash (t\; u) :B }
|
623 |
|
{\Gamma_1 \vdash t:A \fm B & \Gamma_2 \vdash u:A}}
|
624 |
|
\\[1ex]
|
625 |
|
&\\
|
626 |
|
{\infer[\mbox{(Cntr)}]{x:!A, \Gamma \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:!A,x_2:!A, \Gamma \vdash t:B }}
|
627 |
|
&
|
628 |
|
{\infer[\mbox{(Weak)}]{\Gamma, x:B\vdash t: A }
|
629 |
|
{\Gamma \vdash t:A}}
|
630 |
|
|
631 |
|
\\[1ex]
|
632 |
|
&\\
|
633 |
|
{\infer[\mbox{($!$ i)}]{x_1:! B_1, \dots, x_n:! B_n \vdash t: ! A }
|
634 |
|
{ x_1:B_1, \dots, x_n:B_n \vdash t:A}}
|
635 |
|
&
|
636 |
|
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B }
|
637 |
|
{\Gamma_1 \vdash u: ! A & \Gamma_2, x:! A \vdash t:B}}
|
638 |
|
\\[1ex]
|
639 |
|
%{\infer[\mbox{($\forall$ i) (*)}]{{ \Gamma \vdash t:\forall \alpha. A}}{{ \Gamma \vdash t:A}}}
|
640 |
|
% &
|
641 |
|
% {\infer[\mbox{($\forall$ e)}]{\Gamma \vdash t:A[B \slash \al] }
|
642 |
|
%{\Gamma \vdash t:\forall \al. A}}
|
643 |
|
\end{tabular}
|
644 |
|
%}
|
645 |
|
\end{center}
|
646 |
|
\end{frame}
|
647 |
|
|
648 |
|
%----------
|
649 |
|
\begin{frame} \frametitle{Forgetful map from ELL to F}
|
650 |
|
|
651 |
|
|
652 |
|
Consider $\eras{(.)}: ELL \rightarrow F$ defined by:
|
653 |
|
$$\eras{(\bs A)}= \eras{A},\ \ \
|
654 |
|
\eras{(A\fm B)}=\eras{A} \rightarrow \eras{B}, \quad \eras{(\forall \al. A)}= \forall \al. \eras{A}, \quad \eras{\al}=\al.$$
|
655 |
|
|
656 |
|
\begin{prop}
|
657 |
|
If $\Gamma \vdash_{ELL} t:A$ then $t$ is typable in F with type $\eras{A}$.
|
658 |
|
\end{prop}
|
659 |
|
|
660 |
|
\medskip
|
661 |
|
|
662 |
|
If $\eras{A}=T$, say $A$ is a {\emph decoration} of $T$ in ELL.
|
663 |
|
\end{frame}
|
664 |
|
|
665 |
|
|
666 |
|
|
667 |
|
%----------
|
668 |
|
\begin{frame} \frametitle{Data types in ELL}
|
669 |
|
|
670 |
|
\begin{itemize}
|
671 |
|
\item
|
672 |
|
Church unary integers
|
673 |
|
\end{itemize}
|
674 |
|
%\begin{center}
|
675 |
|
%{\tiny
|
676 |
|
%\hspace{-4mm}
|
677 |
|
\begin{tabular}{ccc}
|
678 |
|
system F: & & ELL: \\
|
679 |
|
$N^F$ &\qquad & $N^{ELL}$ \\
|
680 |
|
$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$
|
681 |
|
& & $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al)$
|
682 |
|
\end{tabular}
|
683 |
|
|
684 |
|
%\begin{tabular}{ccc}
|
685 |
|
% system F: & & ELL: \\
|
686 |
|
%$N^F$ &\qquad \qquad \qquad \qquad & $N^{ELL}$ \\
|
687 |
|
%$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$
|
688 |
|
%& & $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al)$
|
689 |
|
%\end{tabular}
|
690 |
|
%}
|
691 |
|
%\end{center}
|
692 |
|
\smallskip
|
693 |
|
|
694 |
|
{\tiny Example: integer $2$, in F:
|
695 |
|
|
696 |
|
$$ \un{2}=\lambda f^{\blue (\al \rightarrow \al)}. \lambda x^{\blue \al}. (f\;(f\; x))~.$$
|
697 |
|
}
|
698 |
|
\begin{itemize}
|
699 |
|
\item
|
700 |
|
Church binary words
|
701 |
|
\end{itemize}
|
702 |
|
%{\tiny
|
703 |
|
\begin{tabular}{cc}
|
704 |
|
system F: & ELL: \\
|
705 |
|
$W^F$ & $W^{ELL}$\\
|
706 |
|
{\tiny $\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$}
|
707 |
|
&
|
708 |
|
{\tiny $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al) \fm \bs(\al \fm \al)$}
|
709 |
|
\end{tabular}
|
710 |
|
%}
|
711 |
|
\smallskip
|
712 |
|
|
713 |
|
{\tiny
|
714 |
|
Example: $w=\langle 1, 0, 0 \rangle$, in F:
|
715 |
|
|
716 |
|
$$ \un{w}=\lambda s_0^{\blue (\al \rightarrow \al)}. \lambda s_1^{\blue (\al \rightarrow \al)}.
|
717 |
|
\lambda x^{\blue \al}. (s_1\;(s_0\; (s_0\; x)))~.$$
|
718 |
|
}
|
719 |
|
\end{frame}
|
720 |
|
|
721 |
|
%----------
|
722 |
|
|
723 |
|
\begin{frame} \frametitle{Representation of functions}
|
724 |
|
|
725 |
|
\begin{itemize}
|
726 |
|
\item a term $t$ of type $!^k N \fm !^l N$, for some $k$, $l$, represents a function over unary integers
|
727 |
|
\item some examples of terms
|
728 |
|
$$\begin{array}{lll}
|
729 |
|
\mbox{addition}&&\\
|
730 |
|
add &=& \la n m f x. (n\; f) \; (m \; f \; x) \; \\
|
731 |
|
|
732 |
|
&:~ &N\fm N \fm N\\
|
733 |
|
&&\\
|
734 |
|
\mbox{multiplication}&&\\
|
735 |
|
%mult &=& \la n m f . (n\; (m\; f)) \\
|
736 |
|
mult &=& \la n m f . (n\; (m\; f)) \\
|
737 |
|
|
738 |
|
&:~ &N\fm N \fm N\\
|
739 |
|
|
740 |
|
\mbox{squaring}&&\\
|
741 |
|
square &=& \la n f . (n\; (n\; f)) \\
|
742 |
|
|
743 |
|
&:~ &\bs N \fm \bs N\\
|
|
268 |
$\begin{array}{lcl}
|
|
269 |
\succ{0}x &:=& 2\cdot x\\
|
|
270 |
\succ{1}x & :=& \succ{}(2\cdot x)
|
744 |
271 |
\end{array}
|
745 |
|
$$
|
746 |
|
\end{itemize}
|
747 |
|
|
748 |
|
%$$\begin{array}{cclcc}
|
749 |
|
% N & =& \forall \al. (\al \fm \al) \fli \pa (\al \fm \al)&&\\
|
750 |
|
%&&&&\\
|
751 |
|
%add &=& \la n. \la m .\la f .\la x . (n \; f \;(m \; f \; x))&:~ &N\fm N \fm N\\
|
752 |
|
%&&&&\\
|
753 |
|
%mult&=& \la n. \la m. (m \; \la k.\la f.\la x. (n \; f\; (k\; f\; x))) \; \underline{0}&:& ~N \fli N \fm \pa N\\
|
754 |
|
%mult&=& \la n. \la m. (m \; (add \; n) ) \; \underline{0}&:& ~N \fli N \fm \pa N\\
|
755 |
|
%&&&&\\
|
756 |
|
%square&& &:&N \fm \pa^{4}N
|
757 |
|
%\end{array}
|
758 |
|
%$$
|
759 |
|
\end{frame}
|
760 |
|
|
761 |
|
%----------
|
762 |
|
|
763 |
|
\begin{frame} \frametitle{Iteration in ELL}
|
764 |
|
|
765 |
|
recall the iterator $\ite$:
|
766 |
|
$$ \ite= \la f {\red x} {\blue n}. \; (n \; f \; x) \; : \bs (A \fm A) \fm {\red \bs A} \fm {\blue N} \fm \bs A$$
|
767 |
|
with $(\ite \; t \; u \; \un{n}) \rightarrow (t\; (t \; \dots (t\; u)\dots))$ \quad ($n$ times)
|
768 |
|
|
769 |
|
\smallskip
|
770 |
|
|
771 |
|
\textbf{examples:}
|
772 |
|
|
773 |
|
$double: N \fm N$
|
774 |
|
|
775 |
|
$exp= (\ite \; double \; \un{1}) : N \fm \bs N$
|
776 |
|
|
777 |
|
remark: $exp$ cannot be iterated; $tower= (\ite \exp \; \un{1})$ non ELL typable.
|
778 |
|
|
779 |
|
%$(add \underline{2}): N \fm N$
|
780 |
|
%
|
781 |
|
%$double'= \la n. (\ite \; (add \underline{2}) \; \un{0}) \; n\; : N \fm \pa N$
|
782 |
|
%
|
783 |
|
%but $double'$ cannot be iterated.
|
784 |
|
%
|
785 |
|
%\medskip
|
786 |
|
|
787 |
|
\end{frame}
|
788 |
|
|
789 |
|
|
790 |
|
%----------
|
791 |
|
\begin{frame} \frametitle{From derivations to proof-nets }
|
792 |
|
|
793 |
|
\begin{figure} %[ht]
|
794 |
|
%\begin{center}
|
795 |
|
\includegraphics[angle=90,width=9cm]{SCANS/ELLtranslation.jpg}
|
796 |
|
%\end{center}
|
797 |
|
\end{figure}
|
798 |
|
\end{frame}
|
799 |
|
|
800 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
801 |
|
|
802 |
|
\begin{frame} \frametitle{Elementary linear logic rules, again}
|
803 |
|
|
804 |
|
%{\tiny
|
805 |
|
\vspace{-5mm}
|
806 |
|
|
807 |
|
\begin{center}
|
808 |
|
\begin{tabular}{ll}
|
809 |
|
{\infer[\mbox{(Id)}]{ x:A \vdash x:A}{}} & \\[1ex]
|
810 |
|
&\\
|
811 |
|
{\infer[\mbox{($\fm$ i)}]{\Gamma \vdash \la x. t: A \fm B }
|
812 |
|
{\Gamma, x:A \vdash t:B}}
|
813 |
|
|
814 |
|
&
|
815 |
|
{\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2 \vdash (t\; u) :B }
|
816 |
|
{\Gamma_1 \vdash t:A \fm B & \Gamma_2 \vdash u:A}}
|
817 |
|
\\[1ex]
|
818 |
|
&\\
|
819 |
|
{\infer[\mbox{(Cntr)}]{x:!A, \Gamma \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:!A,x_2:!A, \Gamma \vdash t:B }}
|
820 |
|
&
|
821 |
|
{\infer[\mbox{(Weak)}]{\Gamma, x:B\vdash t: A }
|
822 |
|
{\Gamma \vdash t:A}}
|
823 |
|
|
824 |
|
\\[1ex]
|
825 |
|
&\\
|
826 |
|
{\infer[\mbox{($!$ i)}]{x_1:! B_1, \dots, x_n:! B_n \vdash t: ! A }
|
827 |
|
{ x_1:B_1, \dots, x_n:B_n \vdash t:A}}
|
828 |
|
&
|
829 |
|
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B }
|
830 |
|
{\Gamma_1 \vdash u: ! A & \Gamma_2, x:! A \vdash t:B}}
|
831 |
|
\\[1ex]
|
832 |
|
%{\infer[\mbox{($\forall$ i) (*)}]{{ \Gamma \vdash t:\forall \alpha. A}}{{ \Gamma \vdash t:A}}}
|
833 |
|
% &
|
834 |
|
% {\infer[\mbox{($\forall$ e)}]{\Gamma \vdash t:A[B \slash \al] }
|
835 |
|
%{\Gamma \vdash t:\forall \al. A}}
|
836 |
|
\end{tabular}
|
837 |
|
%}
|
838 |
|
\end{center}
|
839 |
|
\end{frame}
|
840 |
|
|
841 |
|
|
842 |
|
|
843 |
|
%----------
|
844 |
|
\begin{frame} \frametitle{ELL Proof-Nets }
|
845 |
|
|
846 |
|
\vspace{-8mm}
|
847 |
|
\begin{figure} %[ht]
|
848 |
|
%\begin{center}
|
849 |
|
\includegraphics[angle=90,width=10.8cm]{SCANS/ELLproofnets6.jpg}
|
850 |
|
|
851 |
|
|
852 |
|
%\end{center}
|
853 |
|
%\caption{Lambda terms and Light proof-nets.}\label{schema1}
|
854 |
|
|
855 |
|
\end{figure}
|
856 |
|
|
857 |
|
|
858 |
|
\textit{depth} of an edge: number of boxes it is contained in.
|
859 |
|
|
860 |
|
%\vspace{-1mm}
|
861 |
|
|
862 |
|
\textit{depth} of proof-net: maximal depth of its edges.
|
863 |
|
\end{frame}
|
864 |
|
|
865 |
|
%%%%%%%%%
|
866 |
|
\begin{frame} \frametitle{ELL proof-net : example }
|
867 |
|
|
868 |
|
%\vspace{-5mm}
|
869 |
|
Church integer $\un{3}$:
|
870 |
|
|
871 |
|
\vspace{-4mm}
|
872 |
|
|
873 |
|
\begin{figure} %[ht]
|
874 |
|
%\begin{center}
|
875 |
|
\includegraphics[angle=90,width=5cm]{SCANS/examplePNthree.jpg}
|
876 |
|
%\end{center}
|
877 |
|
\end{figure}
|
878 |
|
|
879 |
|
\end{frame}
|
880 |
|
|
881 |
|
|
882 |
|
|
883 |
|
%%%%%%%%%
|
884 |
|
\begin{frame} \frametitle{ELL proof-net reduction }
|
885 |
|
|
886 |
|
\vspace{-6mm}
|
887 |
|
\begin{figure} %[ht]
|
888 |
|
%\begin{center}
|
889 |
|
\includegraphics[angle=90,width=10cm]{SCANS/ELLreduction.jpg}
|
890 |
|
%\end{center}
|
891 |
|
\end{figure}
|
892 |
|
|
893 |
|
\end{frame}
|
894 |
|
|
895 |
|
%----------
|
896 |
|
\begin{frame} \frametitle{Methodology}
|
897 |
|
|
898 |
|
\begin{itemize}
|
899 |
|
\item write programs with ELL typed $\lambda$-terms
|
900 |
|
\item evaluate them by:
|
901 |
|
|
902 |
|
compiling them into proof-nets, and then performing proof-net reduction
|
903 |
|
\item beware:
|
904 |
|
\begin{itemize}
|
905 |
|
\item proof-net reduction does not exactly match $\beta$-reduction
|
906 |
|
\item ELL does not satisfy subject reduction
|
|
272 |
$
|
|
273 |
\item polynomial induction IND:
|
907 |
274 |
\end{itemize}
|
908 |
|
but that's all right for our present goal \dots
|
909 |
|
|
910 |
|
More about that in tomorrow's talk, without proof-nets.
|
911 |
|
\end{itemize}
|
912 |
|
|
913 |
|
\end{frame}
|
914 |
|
|
915 |
|
|
916 |
|
%%%%%%%%%
|
917 |
|
\begin{frame} \frametitle{ELL proof-net reduction properties}
|
918 |
|
|
919 |
|
\begin{itemize}
|
920 |
|
\item We have
|
921 |
|
\begin{prop}[Stratification]
|
922 |
|
The depth of an edge does not change during reduction.
|
923 |
|
\end{prop}
|
924 |
|
|
925 |
|
Consequence: the depth $d$ of a proof-net does not increase during reduction.
|
926 |
|
\item \textbf{Level-by-level reduction strategy}:
|
927 |
|
|
928 |
|
$R$ proof-net of depth $d$
|
929 |
|
|
930 |
|
perform reduction successively at depth 0, 1 \dots, $d$.
|
931 |
|
|
932 |
|
\end{itemize}
|
933 |
|
\end{frame}
|
934 |
|
|
935 |
|
%%%%%%%%%
|
936 |
|
\begin{frame} \frametitle{Level-by-level reduction of ELL proof-nets}
|
937 |
|
|
938 |
|
|
939 |
|
\begin{itemize}
|
940 |
|
\item let $R$ be an ELL proof-net of depth $d$
|
941 |
|
|
942 |
|
$|R|_i$ = size at depth $i$
|
943 |
|
|
944 |
|
$|R|$ = total size
|
945 |
|
|
946 |
|
round $i$: reduction at depth $i$
|
947 |
|
|
948 |
|
there are $d+1$ rounds for the reduction of $R$
|
949 |
|
|
950 |
|
\item \textbf{what happens during round $i$?}
|
951 |
|
\begin{itemize}
|
952 |
|
\item $|R|_i$ decreases at each step
|
953 |
|
|
954 |
|
thus there are at most $|R|_i$ steps \quad {\blue (size bounds time)}
|
955 |
|
\item but $|R|_{i+1}$ can increase at each step, in fact it can double
|
956 |
|
\item hence round $i$ can cause an exponential size increase
|
957 |
275 |
\end{itemize}
|
958 |
|
\item on the whole we have a $2_d^{|R|}$ size increase
|
959 |
|
\item this yields a $O(2_d^{|R|})$ bound on the number of steps
|
960 |
|
\end{itemize}
|
961 |
|
\end{frame}
|
|
276 |
{\small $$ A(0)
|
|
277 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{0} x) ) )
|
|
278 |
\rightarrow (\forall x^{\normal} . ( A(x) \rightarrow A(\succ{1} x) ) )
|
|
279 |
\rightarrow \forall x^{\normal} . A(x) $$
|
|
280 |
}
|
|
281 |
|
|
282 |
Define all that within a sequent calculus system.
|
|
283 |
|
|
284 |
$\mathcal{C}$-\RC\ is \RC\ with IND restricted to formulas $A$ belonging to the class $\mathcal{C}$ of formulas.
|
|
285 |
\end{frame}
|
962 |
286 |
|
963 |
|
%%%%%%%%%
|
964 |
|
\begin{frame} \frametitle{ELL complexity results}
|
|
287 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
965 |
288 |
|
966 |
|
%\begin{itemize}
|
967 |
|
%\item We get
|
968 |
|
\begin{theorem}[Proof-net complexity]
|
969 |
|
If $R$ is an ELL proof-net of depth $d$, then it can be reduced to its normal form in
|
970 |
|
$O(2_d^{|R|})$ steps.
|
971 |
|
|
972 |
|
\end{theorem}
|
973 |
|
|
974 |
|
\medskip
|
975 |
|
|
976 |
|
\begin{theorem}[Representable functions]
|
977 |
|
The functions representable by a term of type $N \fm !^k N$, where $k\geq 0$ , are exactly the elementary time functions.
|
978 |
|
|
979 |
|
\end{theorem}
|
980 |
|
|
981 |
|
%\end{itemize}
|
982 |
|
\end{frame}
|
983 |
|
|
984 |
|
%%%%%%%%%
|
985 |
|
\begin{frame} \frametitle{Proof of the representability theorem}
|
986 |
|
|
987 |
|
\begin{itemize}
|
988 |
|
\item $\subseteq$ (soundness):
|
|
289 |
\begin{frame}
|
|
290 |
\frametitle{Classification of quantifications}
|
989 |
291 |
|
990 |
|
if $t: N \fm !^k N$ for some $k$, then $t$ represents an elementary function $f$.
|
991 |
|
|
992 |
|
\smallskip
|
993 |
|
|
994 |
|
\textbf{proof}: compute $(t \underline{n})$ by proof-net reduction.
|
995 |
|
|
996 |
|
\item $\supseteq$ (completeness):
|
997 |
|
|
998 |
|
if $f: \mathbb{N} \rightarrow \mathbb{N}$ is an elementary function, then there exists $k$ and $t: N \fm !^k N$ such that $t$ represents $f$.
|
999 |
|
|
1000 |
|
\smallskip
|
1001 |
|
|
1002 |
|
\textbf{proof}: simulation of $O(2_i^n)$-time bounded Turing machine, for any $i$.
|
|
292 |
Write $Q$ for $\forall$ or $\exists$.
|
|
293 |
\begin{itemize}
|
|
294 |
\item safe ($N_0$)/normal ($N_1$) quantifiers:
|
1003 |
295 |
|
|
296 |
$$Q^{N_i}x.A := Qx.(N_i(x) \rightarrow A)$$
|
|
297 |
\item sharply bounded quantifiers:
|
|
298 |
$$Q^{N_i}|x|\leq t.\; A := Qx.(N_i(x) \rightarrow (|x|\leq t) \rightarrow A)$$
|
1004 |
299 |
\end{itemize}
|
1005 |
|
\end{frame}
|
1006 |
|
%%%%%%%%%
|
|
300 |
\end{frame}
|
1007 |
301 |
|
1008 |
|
\section{Light linear logic}
|
1009 |
|
|
1010 |
|
\begin{frame} \frametitle{Taming the exponential blow-up?}
|
1011 |
|
%\begin{frame} \frametitle{Motivation: exponential blow-up}
|
1012 |
|
|
1013 |
|
\vspace{-4mm}
|
1014 |
|
\begin{figure} %[ht]
|
1015 |
|
%\begin{center}
|
1016 |
|
\includegraphics[width=2.7cm]{SCANS/example_exponent.jpg}
|
1017 |
|
%\end{center}
|
1018 |
|
\end{figure}
|
1019 |
|
|
1020 |
|
\end{frame}
|
1021 |
|
|
1022 |
|
|
1023 |
|
%-----------
|
1024 |
|
\begin{frame} \frametitle{Light linear logic (LLL) \qquad [Girard95]}
|
1025 |
|
|
1026 |
|
\begin{itemize}
|
1027 |
|
\item Language of formulas:
|
1028 |
|
$$ A, B := \alpha \;|\; A \multimap B \;|\; \forall \alpha. A \;|\; !A \;|\; {\red \pa A}$$
|
1029 |
|
|
1030 |
|
intuition: $\pa$ a new modality for non-duplicable boxes
|
1031 |
|
\item The following principles are still \textbf{not} provable
|
1032 |
|
$$ !A \multimap A, \quad !A \multimap !!A$$
|
1033 |
|
\end{itemize}
|
1034 |
|
\end{frame}
|
1035 |
|
|
1036 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
1037 |
|
|
1038 |
|
\begin{frame} \frametitle{Light linear logic rules}
|
1039 |
|
|
1040 |
|
\begin{itemize}
|
1041 |
|
\item rules (Id), ($\fm$ i), ($\fm$ e), (Cntr), (Weak): as in ELL.
|
1042 |
|
\item new rules ($!$ i), ($!$ e), ($\pa$ i), ($\pa$ e):
|
1043 |
|
|
1044 |
|
\bigskip
|
|
302 |
%%%%%%%%%%%
|
|
303 |
\begin{frame}
|
|
304 |
\frametitle{Quantifier hierarchy}
|
1045 |
305 |
|
1046 |
|
\begin{center}
|
1047 |
|
\begin{tabular}{ll}
|
1048 |
|
% {\infer[\mbox{(Id)}]{ x:A \vdash x:A}{}} & \\[1ex]
|
1049 |
|
% &\\
|
1050 |
|
% {\infer[\mbox{($\fm$ i)}]{\Gamma \vdash \la x. t: A \fm B }
|
1051 |
|
% {\Gamma, x:A \vdash t:B}}
|
1052 |
|
%
|
1053 |
|
% &
|
1054 |
|
% {\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2 \vdash (t\; u) :B }
|
1055 |
|
% {\Gamma_1 \vdash t:A \fm B & \Gamma_2 \vdash u:A}}
|
1056 |
|
%\\[1ex]
|
1057 |
|
%&\\
|
1058 |
|
%{\infer[\mbox{(Cntr)}]{x:A, \Gamma \vdash t[x \slash x_1, x \slash x_2] :B }{x_1:!A,x_2:!A, \Gamma \vdash t:B }}
|
1059 |
|
%&
|
1060 |
|
%{\infer[\mbox{(Weak)}]{\Gamma, x:B\vdash t: A }
|
1061 |
|
% {\Gamma \vdash t:A}}
|
1062 |
|
%
|
1063 |
|
%\\[1ex]
|
1064 |
|
%&\\
|
1065 |
|
{\infer[\mbox{($!$ i)}]{x:! B \vdash t: ! A }
|
1066 |
|
{ x :B \vdash t:A}}
|
1067 |
|
&
|
1068 |
|
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B }
|
1069 |
|
{\Gamma_1 \vdash u: ! A & \Gamma_2, x:! A \vdash t:B}}
|
1070 |
|
\\[1ex]
|
1071 |
|
&\\
|
1072 |
|
|
1073 |
|
{\infer[\mbox{($\pa$ i)}]{! \Gamma, \pa \Delta \vdash t: \pa A }
|
1074 |
|
{ \Gamma, \Delta \vdash t:A}}
|
1075 |
|
&
|
1076 |
|
{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B }
|
1077 |
|
{\Gamma_1 \vdash u: \pa A & \Gamma_2, x: \pa A \vdash t:B}}
|
1078 |
|
|
1079 |
|
%{\infer[\mbox{($\pa$ i)}]{x_1:! B_1, \dots, x_i: \pa B_i , \dots, x_n:\pa B_n \vdash t: \pa A }
|
1080 |
|
% { x_1:B_1, \dots, x_i: B_i, \dots , x_n:B_n \vdash t:A}}
|
1081 |
|
% &
|
1082 |
|
%{\infer[\mbox{($!$ e)}]{\Gamma_1,\Gamma_2 \vdash t[u \slash x] :B }
|
1083 |
|
% {\Gamma_1 \vdash u: \pa A & \Gamma_2, x: \pa A \vdash t:B}}
|
1084 |
|
%\\[1ex]
|
1085 |
|
|
1086 |
|
%{\infer[\mbox{($\forall$ i) (*)}]{{ \Gamma \vdash t:\forall \alpha. A}}{{ \Gamma \vdash t:A}}}
|
1087 |
|
% &
|
1088 |
|
% {\infer[\mbox{($\forall$ e)}]{\Gamma \vdash t:A[B \slash \al] }
|
1089 |
|
%{\Gamma \vdash t:\forall \al. A}}
|
1090 |
|
\end{tabular}
|
1091 |
|
%}
|
1092 |
|
\end{center}
|
1093 |
|
|
1094 |
|
\bigskip
|
1095 |
|
where if $\Gamma= x_1:B_1, \dots, x_k:B_k$,
|
1096 |
|
|
1097 |
|
$\dagger \Gamma= x_1: \dagger B_1, \dots, x_k: :\dagger B_k$, for $\dagger= !, \pa$.
|
|
306 |
We define:
|
|
307 |
\begin{itemize}
|
|
308 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $= formulas with only sharply bounded quantifiers,
|
|
309 |
\item $\Sigma^\safe_{i+1}$= closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers,
|
|
310 |
\item $\Pi^\safe_{i+1}$ = closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers,
|
|
311 |
\item $\Sigma^\safe= \cup_i \Sigma^\safe_i$.
|
1098 |
312 |
\end{itemize}
|
1099 |
|
|
1100 |
313 |
\end{frame}
|
1101 |
314 |
|
1102 |
|
%----------
|
1103 |
|
\begin{frame} \frametitle{Forgetful map from LLL to ELL}
|
|
315 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
1104 |
316 |
|
1105 |
|
|
1106 |
|
Consider $\lte{(.)}: LLL \rightarrow ELL$ defined by:
|
1107 |
|
$$\lte{(\pa A)}= ! \lte{A}, \quad \lte{(! A)}= ! \lte{A}$$
|
1108 |
|
and other connectives unchanged.
|
1109 |
|
%\eras{(A\fm B)}=\eras{A} \rightarrow \eras{B}, \quad \eras{(\forall \al. A)}= \forall \al. \eras{A}, \quad \eras{\al}=\al.$$
|
1110 |
|
|
1111 |
|
\begin{prop}
|
1112 |
|
If $\Gamma \vdash_{LLL} t:A$ then $\lte{\Gamma} \vdash_{ELL} t:\lte{A}$.
|
1113 |
|
\end{prop}
|
1114 |
|
|
1115 |
|
\end{frame}
|
1116 |
|
|
1117 |
|
|
1118 |
|
|
1119 |
|
%----------
|
1120 |
|
\begin{frame} \frametitle{Data types in LLL}
|
1121 |
|
|
1122 |
|
\begin{itemize}
|
1123 |
|
\item
|
1124 |
|
Church unary integers
|
1125 |
|
\end{itemize}
|
1126 |
|
%\begin{center}
|
1127 |
|
%{\tiny
|
1128 |
|
%\hspace{-4mm}
|
1129 |
|
\begin{tabular}{ccc}
|
1130 |
|
system F: & & LLL: \\
|
1131 |
|
$N^F$ &\qquad & $N^{LLL}$ \\
|
1132 |
|
$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$
|
1133 |
|
& & $\forall \al. \bs (\al \fm \al) \fm {\red \pa} (\al \fm \al)$
|
1134 |
|
\end{tabular}
|
1135 |
|
|
1136 |
|
%\begin{tabular}{ccc}
|
1137 |
|
% system F: & & ELL: \\
|
1138 |
|
%$N^F$ &\qquad \qquad \qquad \qquad & $N^{ELL}$ \\
|
1139 |
|
%$\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$
|
1140 |
|
%& & $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al)$
|
1141 |
|
%\end{tabular}
|
1142 |
|
%}
|
1143 |
|
%\end{center}
|
1144 |
|
\smallskip
|
1145 |
|
|
1146 |
|
{\tiny Example: integer $2$, in F:
|
1147 |
|
|
1148 |
|
$$ \un{2}=\lambda f^{\blue (\al \rightarrow \al)}. \lambda x^{\blue \al}. (f\;(f\; x))~.$$
|
1149 |
|
}
|
1150 |
|
\begin{itemize}
|
1151 |
|
\item
|
1152 |
|
Church binary words
|
1153 |
|
\end{itemize}
|
1154 |
|
%{\tiny
|
1155 |
|
\begin{tabular}{cc}
|
1156 |
|
system F: & LLL: \\
|
1157 |
|
$W^F$ & $W^{LLL}$\\
|
1158 |
|
{\tiny $\forall \al. (\al \rightarrow \al) \rightarrow (\al \rightarrow \al) \rightarrow (\al \rightarrow \al)$}
|
1159 |
|
&
|
1160 |
|
{\tiny $\forall \al. \bs (\al \fm \al) \fm \bs (\al \fm \al) \fm {\red \pa} (\al \fm \al)$}
|
1161 |
|
\end{tabular}
|
1162 |
|
%}
|
1163 |
|
\smallskip
|
1164 |
|
|
1165 |
|
{\tiny
|
1166 |
|
Example: $w=\langle 1, 0, 0 \rangle$, in F:
|
1167 |
|
|
1168 |
|
$$ \un{w}=\lambda s_0^{\blue (\al \rightarrow \al)}. \lambda s_1^{\blue (\al \rightarrow \al)}.
|
1169 |
|
\lambda x^{\blue \al}. (s_1\;(s_0\; (s_0\; x)))~.$$
|
1170 |
|
}
|
1171 |
|
\end{frame}
|
1172 |
|
|
1173 |
|
%----------
|
1174 |
|
|
1175 |
|
\begin{frame} \frametitle{Representation of functions}
|
1176 |
|
|
1177 |
|
\begin{itemize}
|
1178 |
|
\item a term $t$ of type $!^k N \fm \pa^l N$, for some $k$, $l$, represents a function over unary integers
|
1179 |
|
|
1180 |
|
$!^k W \fm \pa^l W$: function over binary words.
|
|
317 |
\begin{frame}
|
|
318 |
\frametitle{Result and work-in-progress}
|
1181 |
319 |
|
1182 |
|
\item some examples of terms
|
1183 |
|
$$\begin{array}{lll}
|
1184 |
|
\mbox{addition}&&\\
|
1185 |
|
add &=& \la n m f x. (n\; f) \; (m \; f \; x) \; \\
|
1186 |
|
|
1187 |
|
&:~ &N\fm N \fm N\\
|
1188 |
|
&&\\
|
1189 |
|
\mbox{double}&&\\
|
1190 |
|
double &=& \la n f x. (n\; f) \; (n \; f \; x) \; \\
|
1191 |
|
|
1192 |
|
&:~ &! N \fm \pa N\\
|
1193 |
|
\mbox{concatenation}&&\\
|
1194 |
|
%conc &=& \la u^{W}. \la v^{W} .\La \al. \la o. \la z. \la x . (u \; o \; z \;(v \; o\; z \; x))\\
|
1195 |
|
%conc &=& \la u^{W}. \la v^{W} . \la o. \la z. \la x . ((u) \; o \; z) \;(v) \; o\; z \; x\\
|
1196 |
|
% &:~ &W\fl W \fl W\\
|
1197 |
|
conc &:~ &W\fm W \fm W\\
|
1198 |
|
\end{array}
|
1199 |
|
$$
|
1200 |
|
%\mbox{multiplication}&&\\
|
1201 |
|
%%mult &=& \la n m f . (n\; (m\; f)) \\
|
1202 |
|
%mult' &=& \la n m f . (n\; (m\; f)) \\
|
1203 |
|
%
|
1204 |
|
% &:~ &N\fm N \fm N\\
|
1205 |
|
%
|
1206 |
|
%\mbox{squaring}&&\\
|
1207 |
|
%square &=& \la n f . (n\; (n\; f)) \\
|
1208 |
|
%
|
1209 |
|
% &:~ &\bs N \fm \bs N\\
|
1210 |
|
%\end{array}
|
1211 |
|
%$$
|
1212 |
|
\end{itemize}
|
1213 |
|
|
1214 |
|
\end{frame}
|
1215 |
|
|
1216 |
|
%----------
|
1217 |
|
|
1218 |
|
\begin{frame} \frametitle{Iteration in LLL}
|
1219 |
|
|
1220 |
|
we can type the iterator $\ite$:
|
1221 |
|
$$ \ite= \la f {x} {n}. \; (n \; f \; x) \; : \bs (A \fm A) \fm {\red \bs A} \fm {N} \fm {\red \pa A}$$
|
1222 |
|
%with $(\ite _A \; F \; t) \; \un{n} \rightarrow (F\; (F \; \dots (F\; t)\dots))$ \quad ($n$ times)
|
1223 |
|
|
1224 |
|
\textbf{examples:}
|
1225 |
|
|
1226 |
|
$(add \underline{3}): N \fm N$ can be iterated
|
1227 |
|
|
1228 |
|
\smallskip
|
1229 |
|
|
1230 |
|
$double: !N \fm \pa N$ cannot be iterated
|
1231 |
|
|
1232 |
|
\smallskip
|
1233 |
|
|
1234 |
|
thus some exponentially growing terms are not typable
|
1235 |
|
%$double'= \la n. (\ite \; (add \underline{2}) \; \un{0}) \; n\; : N \fm \pa N$
|
1236 |
|
%
|
1237 |
|
%but $double'$ cannot be iterated.
|
1238 |
|
|
1239 |
|
|
1240 |
|
\end{frame}
|
1241 |
|
|
1242 |
|
%%%%%%%%%
|
1243 |
|
\begin{frame} \frametitle{LLL proof-nets}
|
1244 |
|
|
1245 |
|
\vspace{-3mm}
|
1246 |
|
\begin{figure} %[ht]
|
1247 |
|
%\begin{center}
|
1248 |
|
\includegraphics[angle=90,width=6.3cm]{SCANS/LLLboxes.jpg}
|
1249 |
|
%\end{center}
|
1250 |
|
\end{figure}
|
1251 |
|
|
1252 |
|
\end{frame}
|
1253 |
|
|
1254 |
|
%%%%%%%%%
|
1255 |
|
\begin{frame} \frametitle{LLL proof-net reduction}
|
1256 |
|
|
1257 |
|
\vspace{-4mm}
|
1258 |
|
|
1259 |
|
\begin{figure} %[ht]
|
1260 |
|
%\begin{center}
|
1261 |
|
\includegraphics[angle=90,width=6cm]{SCANS/LLLreduction.jpg}
|
1262 |
|
%\end{center}
|
1263 |
|
\end{figure}
|
1264 |
|
|
1265 |
|
\end{frame}
|
1266 |
|
|
1267 |
|
%%%%%%%%%
|
1268 |
|
\begin{frame} \frametitle{Level-by-level reduction of LLL proof-nets}
|
1269 |
|
|
1270 |
|
|
1271 |
|
\begin{itemize}
|
1272 |
|
\item as in ELL we use a level-by-level strategy
|
1273 |
|
\item let $R$ be an LLL proof-net of depth $d$
|
1274 |
|
|
1275 |
|
round $i$: reduction at depth $i$
|
1276 |
|
|
1277 |
|
there are $d+1$ rounds for the reduction of $R$
|
1278 |
|
|
1279 |
|
\item \textbf{what happens during round $i$?}
|
1280 |
|
\begin{itemize}
|
1281 |
|
\item $|R|_i$ decreases at each step
|
1282 |
|
|
1283 |
|
thus there are at most $|R|_i$ steps \quad {\blue (size bounds time)}
|
1284 |
|
\item yet $|R|_{i+1}$ can increase:
|
|
320 |
\begin{theorem}[Soundness]
|
|
321 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
|
|
322 |
\end{theorem}
|
1285 |
323 |
|
1286 |
|
during round $i$ we can have a quadratic increase:
|
1287 |
|
|
1288 |
|
$$|R'|_{i+1} \leq |R|_{i+1}^2$$
|
1289 |
|
\end{itemize}
|
1290 |
|
\item this repeats $d$ times, so on the whole we have a $|R|^{2^d}$ size increase
|
1291 |
|
\item this yields a $O(|R|^{2^d})$ bound on the number of steps
|
1292 |
|
\end{itemize}
|
1293 |
|
\end{frame}
|
|
324 |
\begin{conjecture}[Soundness]
|
|
325 |
If $f$ is provably total in \RCi\, then $f$ belongs to $\fphi{i}$.
|
|
326 |
\end{conjecture}
|
1294 |
327 |
|
1295 |
|
%%%%%%%%%
|
1296 |
|
\begin{frame} \frametitle{LLL complexity results}
|
1297 |
|
|
1298 |
|
%\begin{itemize}
|
1299 |
|
%\item We get
|
1300 |
|
\begin{theorem}[Proof-net complexity]
|
1301 |
|
If $R$ is an LLL proof-net of depth $d$, then it can be reduced to its normal form in
|
1302 |
|
$O(|R|^{2^d})$ steps.
|
1303 |
|
|
1304 |
|
\end{theorem}
|
1305 |
|
|
1306 |
|
Thus at fixed depth $d$ we have a polynomial bound.
|
1307 |
|
\medskip
|
1308 |
|
|
1309 |
|
\begin{theorem}[Representable functions]
|
1310 |
|
The functions representable by a term of type $W \fm \pa^k W$, for $k\geq 0$, are exactly the functions of FP (polynomial time functions).
|
1311 |
|
\end{theorem}
|
1312 |
|
|
1313 |
|
%\end{itemize}
|
1314 |
328 |
\end{frame}
|
1315 |
329 |
|
1316 |
|
%%%%%%%%%
|
1317 |
|
\begin{frame} \frametitle{Further comments about LLL}
|
1318 |
|
|
1319 |
|
\begin{itemize}
|
1320 |
|
\item \textbf{LLL and $\lambda$-calculus}:
|
1321 |
|
|
1322 |
|
a proper type system for $\lambda$-calculus can be designed out of LLL, which ensures a strong polynomial time bound on $\beta$-reduction (and not only on proof-net reduction)
|
1323 |
|
\item \textbf{about expressivity}:
|
1324 |
|
|
1325 |
|
the completeness result is an extensional one
|
1326 |
|
|
1327 |
|
but the intensional expressivity of LLL is quite limited
|
1328 |
|
|
1329 |
|
\smallskip
|
1330 |
|
|
1331 |
|
indeed: rich features (higher-order, polymorphism) but "pessimistic" account of iteration \dots
|
1332 |
|
\end{itemize}
|
1333 |
|
\end{frame}
|
1334 |
|
|
1335 |
|
\section{Other linear logic variants}
|
1336 |
|
|
1337 |
|
%%%%%%%%%
|
1338 |
|
\begin{frame} \frametitle{A glimpse of a linear logics zoo}
|
1339 |
|
|
1340 |
|
\begin{itemize}
|
1341 |
|
\item for P
|
1342 |
|
\begin{itemize}
|
1343 |
|
\item soft linear logic: {\tiny [Lafont04]}
|
1344 |
|
|
1345 |
|
a simple system, but with more constrained programming
|
1346 |
|
|
1347 |
|
\item bounded linear logic: {\tiny [GSS92]}
|
1348 |
|
|
1349 |
|
$!_{P(\vec{x})} A$ : more explicit, but more flexible
|
1350 |
|
\end{itemize}
|
1351 |
|
\item for EXPTIME and $k$-EXPTIME
|
1352 |
|
\begin{itemize}
|
1353 |
|
\item ELL again: see tomorrow's talk
|
1354 |
|
\end{itemize}
|
1355 |
|
\item for PSPACE
|
1356 |
|
\begin{itemize}
|
1357 |
|
\item $STA_B$ {\tiny [GMRdR08]} : extends soft linear logic with a craftly typed conditional
|
1358 |
|
\end{itemize}
|
1359 |
|
\item for LOGSPACE
|
1360 |
|
\begin{itemize}
|
1361 |
|
\item $IntML$ {\tiny[DLS10]}: evaluation by computation by interaction
|
1362 |
|
\end{itemize}
|
1363 |
|
\end{itemize}
|
1364 |
|
\end{frame}
|
1365 |
|
|
1366 |
|
%\section{Conclusion}
|
1367 |
|
%%%%%%%%%%%%%%%%
|
1368 |
|
\begin{frame}{Conclusions and perspectives}
|
1369 |
|
\begin{itemize}
|
1370 |
|
\item while ramified recursion is based on a stratification of data,
|
1371 |
|
|
1372 |
|
ELL / LLL are based on a stratification of programs
|
1373 |
|
\item they yield type systems for $\lambda$-calculus
|
1374 |
|
\item w.r.t. other ICC approaches:
|
1375 |
|
\begin{itemize}
|
1376 |
|
\item handle higher-order computation
|
1377 |
|
\item but limited intensional expressivity
|
1378 |
|
\end{itemize}
|
1379 |
|
relations with other ICC systems are still to explore
|
1380 |
|
%\item still to explore: how they relate to other more expressive ICC approaches (interpretations, NSI types)
|
1381 |
|
\item light logics are languages for higher-order computation, but we only characterize first-order complexity classes \dots
|
1382 |
|
|
1383 |
|
what about higher-order complexity?
|
1384 |
|
\end{itemize}
|
1385 |
|
\end{frame}
|
1386 |
|
|
1387 |
330 |
\end{document}
|
1388 |
331 |
|
1389 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
1390 |
|
%%%%%%%%%%%%%%%%% GARBAGE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
1391 |
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
1392 |
|
|
1393 |
|
|
1394 |
|
%-----------
|
1395 |
|
\begin{frame} \frametitle{Light linear logic, LLL (Girard 98)}
|
1396 |
|
|
1397 |
|
%\vspace{-8mm}
|
1398 |
|
|
1399 |
|
$$
|
1400 |
|
\begin{array}{ccc}
|
1401 |
|
\bs A \fm \bs A \otimes \bs A \qquad & \infer{ \bs A\vdash \bs B}{A \vdash B} \qquad & \\
|
1402 |
|
& \bs A \otimes \bs B \fm \pa (A \otimes B) &
|
1403 |
|
\end{array}
|
1404 |
|
$$
|
1405 |
|
|
1406 |
|
\begin{tabular}{ll}
|
1407 |
|
new modality $\pa$, with: & $\bs A \fm \pa A$\\
|
1408 |
|
$\pa$ is a functor and &$\pa A \otimes \pa B \fm \pa(A\otimes B)$
|
1409 |
|
\end{tabular}
|
1410 |
|
|
1411 |
|
$\longrightarrow$ manages to avoid both exponentiation schemes
|
1412 |
|
|
1413 |
|
\smallskip
|
1414 |
|
|
1415 |
|
Light affine logic (LAL) is the variant with full weakening.
|
1416 |
|
\end{frame}
|
1417 |
|
|
1418 |
|
%%%%%%%%%%%
|
1419 |
|
\begin{frame} \frametitle{Light linear logic: properties}
|
1420 |
|
Proofs can be represented as \textit{proof-nets} (graphs). Normalization of proof-nets
|
1421 |
|
corresponds to program execution.
|
1422 |
|
\smallskip
|
1423 |
|
|
1424 |
|
\begin{theo}[Girard] %[Girard 95]
|
1425 |
|
Light linear logic \textit{proof-nets} admit a polynomial time normalization (at fixed \textit{depth}).
|
1426 |
|
\end{theo}
|
1427 |
|
|
1428 |
|
%\smallskip
|
1429 |
|
|
1430 |
|
\begin{theo}[Completeness. Girard/Asperti-Roversi]
|
1431 |
|
%All polynomial time functions on binary lists
|
1432 |
|
All polynomial time functions $f: \{0,1\}^{\star} \rightarrow \{0,1\}^{\star}$
|
1433 |
|
can be represented in Light Linear Logic (resp. Light \textit{Affine} Logic).
|
1434 |
|
\end{theo}
|
1435 |
|
|
1436 |
|
\end{frame}
|
1437 |
|
|
1438 |
|
%-----------
|
1439 |
|
\begin{frame} \frametitle{ Light linear logic and typing}
|
1440 |
|
|
1441 |
|
%\vspace{-3mm}
|
1442 |
|
|
1443 |
|
Can we use LLL or LAL directly as type systems for lambda calculus~?
|
1444 |
|
\smallskip
|
1445 |
|
There are two pitfalls:
|
1446 |
|
\begin{itemize}
|
1447 |
|
\item they do not give subject-reduction,
|
1448 |
|
\item no polynomial bound on the number of $\beta$-reduction steps for typed terms (even if there is one on proof-net normalization).
|
1449 |
|
\end{itemize}
|
1450 |
|
\end{frame}
|
1451 |
|
|
1452 |
|
%-----------
|
1453 |
|
\begin{frame} \frametitle{Type system DLAL}
|
1454 |
|
|
1455 |
|
%\vspace{-3mm}
|
1456 |
|
%
|
1457 |
|
%Can we use LLL or LAL directly as type systems for lambda calculus~?
|
1458 |
|
% There are two pitfalls:
|
1459 |
|
%\begin{itemize}
|
1460 |
|
%\item they do not give subject-reduction,
|
1461 |
|
%\item no polynomial bound on the number of $\beta$-reduction steps for typed terms (even if there is one on proof-net normalization).
|
1462 |
|
%\end{itemize}
|
1463 |
|
|
1464 |
|
%\medskip
|
1465 |
|
%$\rightarrow$ To overcome these problems:
|
1466 |
|
|
1467 |
|
To overcome the problems with typing in LAL:
|
1468 |
|
|
1469 |
|
we can restrict in Light affine logic the use of $\bs$ to $\bs A \fm B$, denoted $A \fli B$
|
1470 |
|
|
1471 |
|
the DLAL (\textit{Dual Light Affine Logic}) type system [Baillot-Terui04]:
|
1472 |
|
$$ A, B ::= \alpha \; |\; A \fm B \; |\; A \fli B \; |\; \pa A \; |\; \forall \alpha. A$$
|
1473 |
|
|
1474 |
|
\vspace{-4mm}
|
1475 |
|
typing judgements of the form: $ {\blue \Gamma} ; {\red \Delta} \vdash t: A$,
|
1476 |
|
where
|
1477 |
|
|
1478 |
|
\begin{tabular}{l}
|
1479 |
|
$ {\blue \Gamma}$ contains duplicable variables,\\
|
1480 |
|
${\red \Delta}$ contains linear variables.
|
1481 |
|
\end{tabular}
|
1482 |
|
\end{frame}
|
1483 |
|
|
|
332 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
333 |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
1484 |
334 |
%----------
|
1485 |
|
%
|
1486 |
|
%%\overlays{8}{
|
1487 |
|
%\begin{frame} \frametitle{DLAL typing rules}
|
1488 |
|
%%\DefaultTransition{Dissolve}
|
1489 |
|
%{\tiny
|
1490 |
|
%%\onlySlide*{1}{
|
1491 |
|
%% \begin{center}
|
1492 |
|
%%\hspace{-12mm}
|
1493 |
|
%%\fbox{
|
1494 |
|
%\begin{tabular}{l@{\hspace{-2mm}}l}
|
1495 |
|
% {\infer[\mbox{(Id)}]{; x:A \vdash x:A}{}} & \\
|
1496 |
|
%% &\\
|
1497 |
|
%
|
1498 |
|
%\untilSlide*{2}{
|
1499 |
|
%{\infer[\mbox{($\fm$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fm B }
|
1500 |
|
% {\Gamma_1; \Delta_1, x:A \vdash t:B}}
|
1501 |
|
%}
|
1502 |
|
%\onlySlide*{3}{
|
1503 |
|
%{\red \infer[\mbox{($\fm$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fm B }
|
1504 |
|
% {\Gamma_1{\blue ;} \Delta_1, x:A \vdash t:B}}
|
1505 |
|
%}
|
1506 |
|
%\fromSlide*{4}{
|
1507 |
|
%{\infer[\mbox{($\fm$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fm B }
|
1508 |
|
% {\Gamma_1; \Delta_1, x:A \vdash t:B}}
|
1509 |
|
%}
|
1510 |
|
% &
|
1511 |
|
% {\infer[\mbox{($\fm$ e)}]{\Gamma_1,\Gamma_2; \Delta_1, \Delta_2 \vdash (t\; u) :B }
|
1512 |
|
% {\Gamma_1; \Delta_1 \vdash t:A \fm B & \Gamma_2; \Delta_2 \vdash u:A}}
|
1513 |
|
%\\[1ex]
|
1514 |
|
%
|
1515 |
|
%\untilSlide*{2}{
|
1516 |
|
%{\infer[\mbox{($\fli$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fli B }
|
1517 |
|
% {\Gamma_1, x:A ; \Delta_1\vdash t:B}}
|
1518 |
|
%}
|
1519 |
|
%\onlySlide*{3}{\red
|
1520 |
|
%{\infer[\mbox{($\fli$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fli B }
|
1521 |
|
% {\Gamma_1, x:A {\blue ;} \Delta_1\vdash t:B}}
|
1522 |
|
%}
|
1523 |
|
%\fromSlide*{4}{
|
1524 |
|
%{\infer[\mbox{($\fli$ i)}]{\Gamma_1; \Delta_1 \vdash \la x. t: A \fli B }
|
1525 |
|
% {\Gamma_1, x:A ; \Delta_1\vdash t:B}}
|
1526 |
|
%}
|
1527 |
|
% &
|
1528 |
|
%\untilSlide*{3}{
|
1529 |
|
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B }
|
1530 |
|
% {\Gamma_1; \Delta_1 \vdash t:A \fli B & ; z:C \vdash u:A}}
|
1531 |
|
%}
|
1532 |
|
%\onlySlide*{4}{\red
|
1533 |
|
%{\infer[\mbox{($\fli$ e)}]{\Gamma_1, z:C ; \Delta_1 \vdash (t\; u) :B }
|